

Competitive Algorithm Design and Practice Shortest Path 2014/03/26

Guan Yu, Chen (kevinx6000)

kevinx6000@gmail.com

Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan

acm International Collegiate Programming Contest IEM. event sponsor

Outline

- Single Source Shortest Path
 - Relaxation
 - Bellman Ford
 - SPFA
- All Pair Shortest Path
 - Floyd

Singe Source Shortest Path

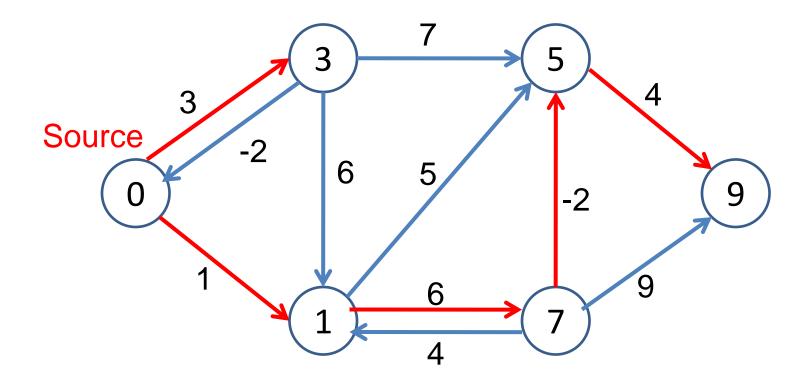
acm International Collegiate Programming Contest event sponsor

SSSP



acm International Collegiate Programming Contest EVALUATION STATES STAT

SSSP



SSSP

- How?
 - Greedy?
 - BFS?
 - Backtracking?

SSSP

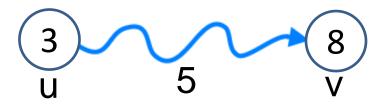
- How?
 - Greedy? WA if not greedy properly..
 - BFS? WA, only for un-weighted shortest path
 - Backtracking? TLE

See another slide for more details

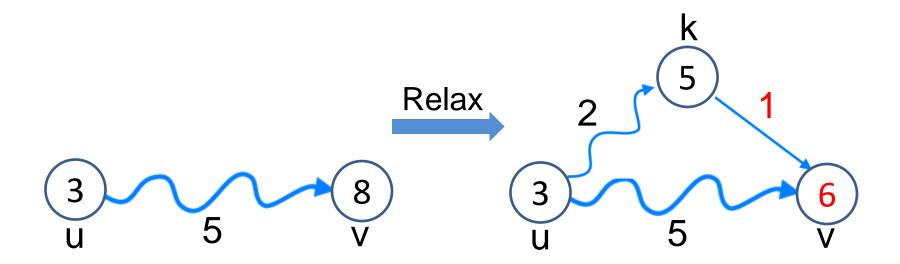
SSSP - Algorithm

- Bellman Ford
- SPFA
- Dijkstra
- And more...

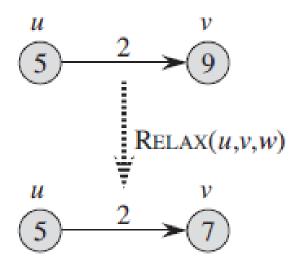
Triangle Inequality



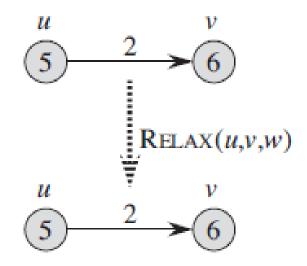
Triangle Inequality



Examples



Shorter than before



Remain unchanged

Pseudo code

- Relax all edges in graph
 - Totally n-1 times

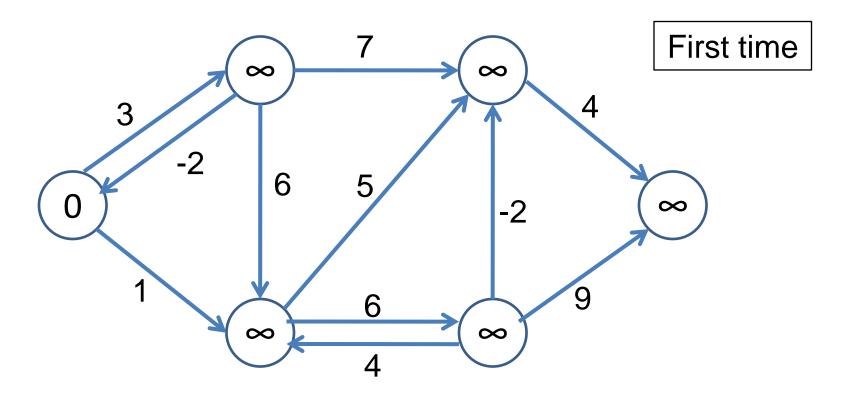
- Relax all edges in graph
 - Totally n-1 times

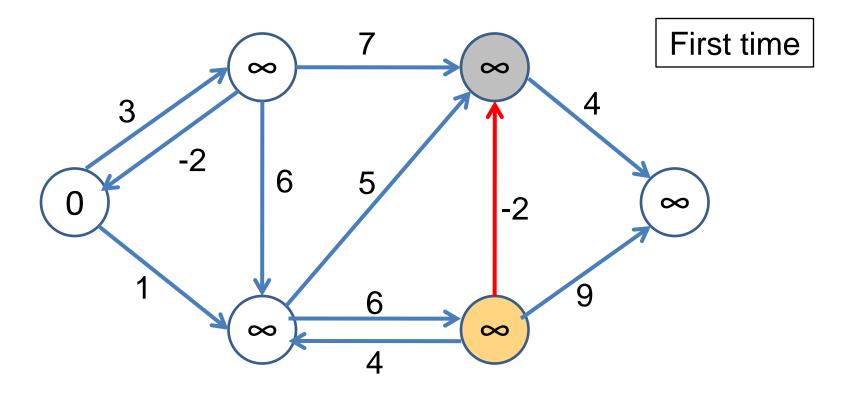
- Always n-1 times?
 - Stop when all edges stop relaxing

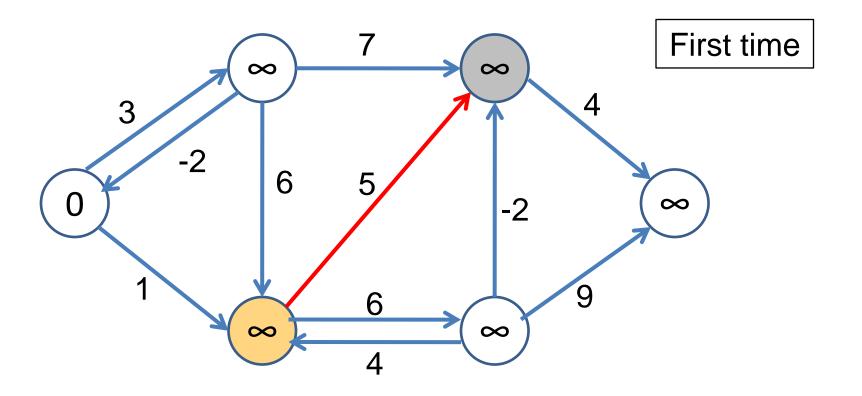
- Relax all edges in graph
 - Totally n-1 times

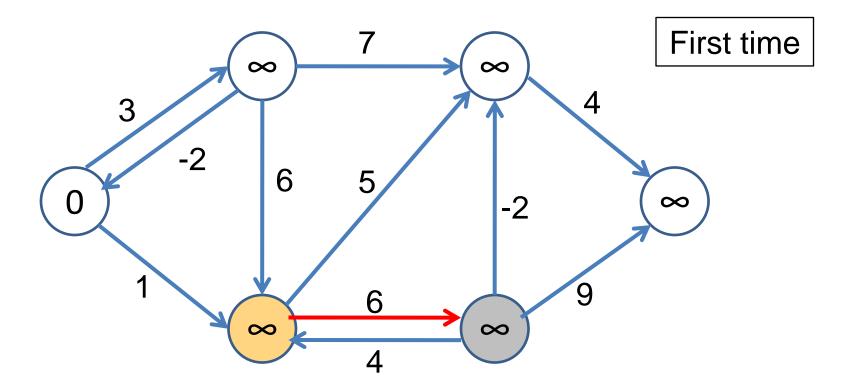
- Always n-1 times?
 - Stop when all edges stop relaxing

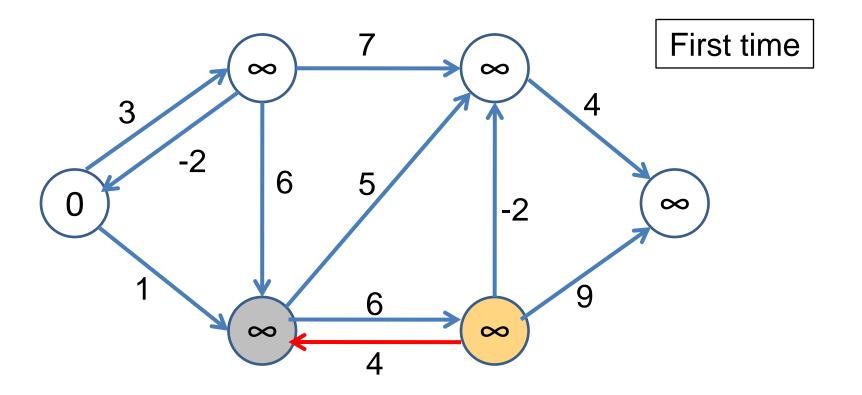
- Complexity
 - -O(VE)

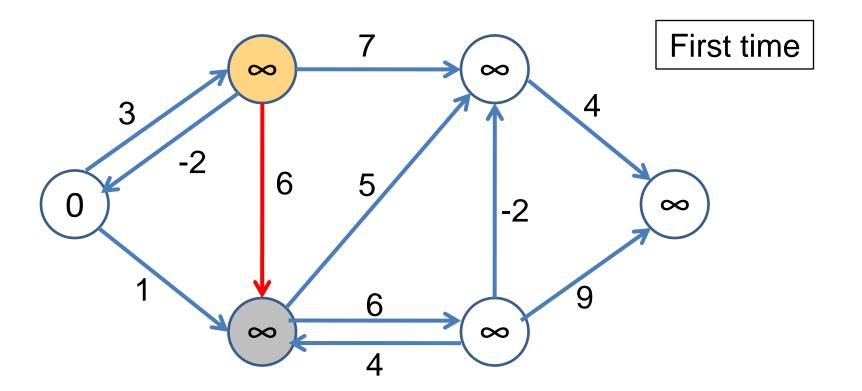


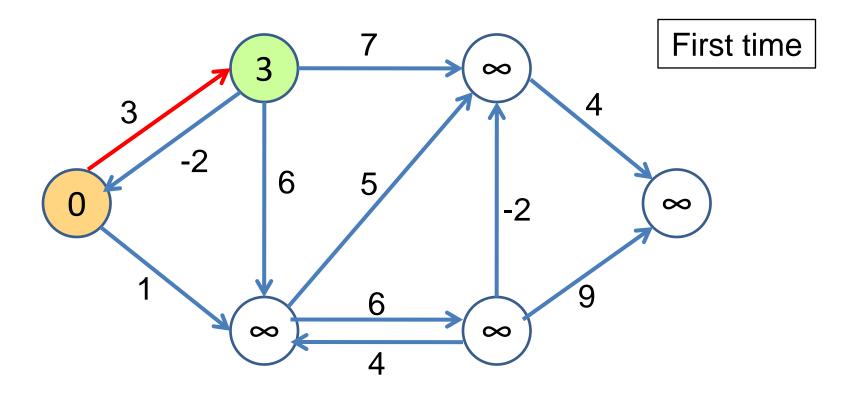


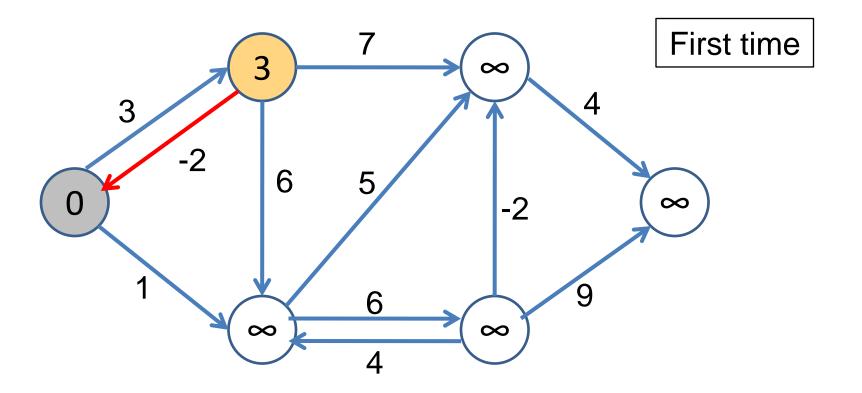


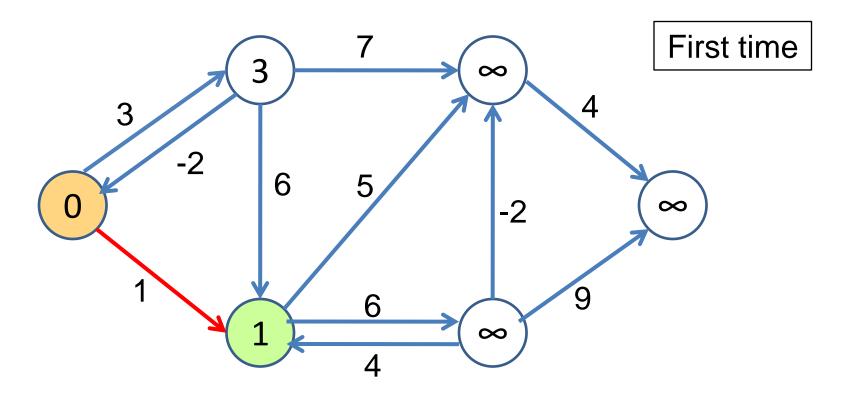


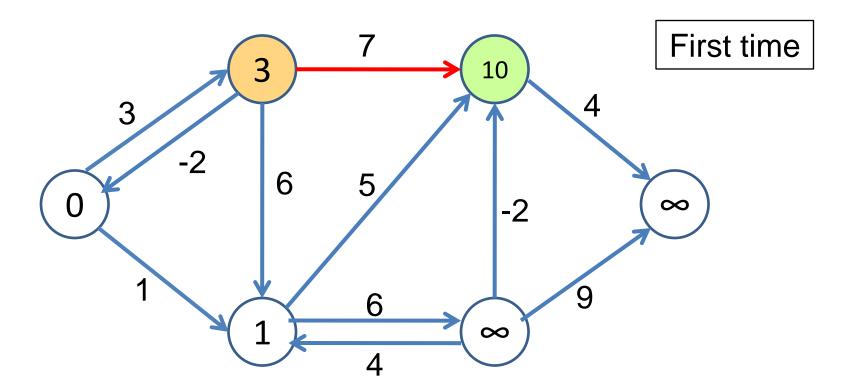


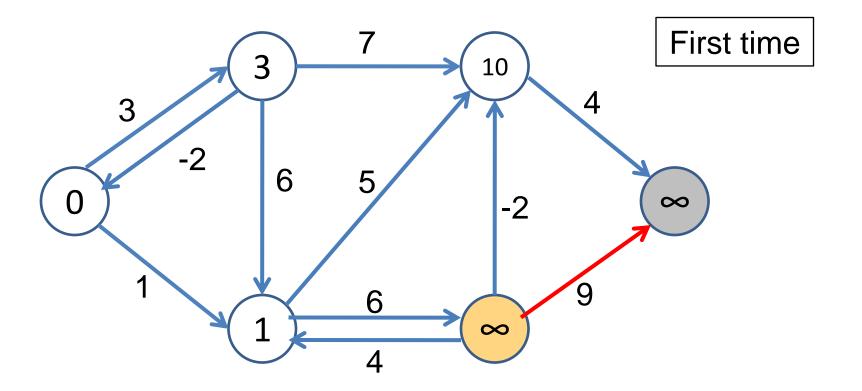


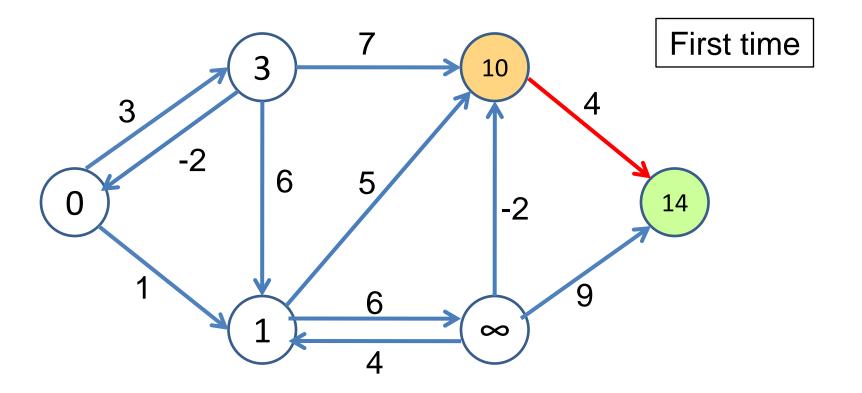


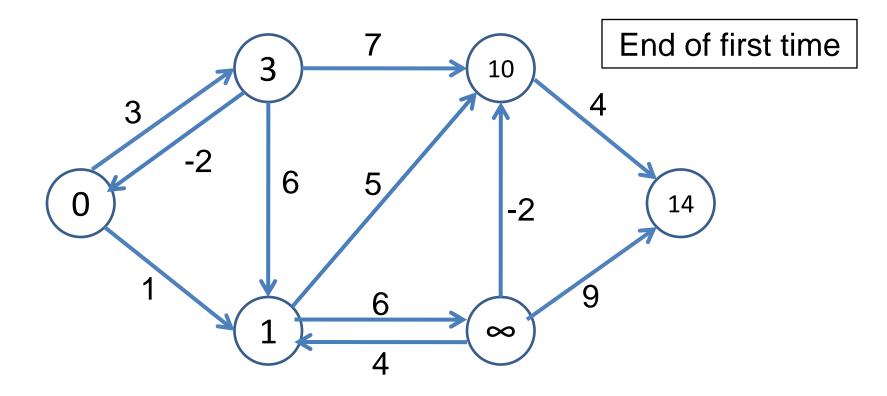


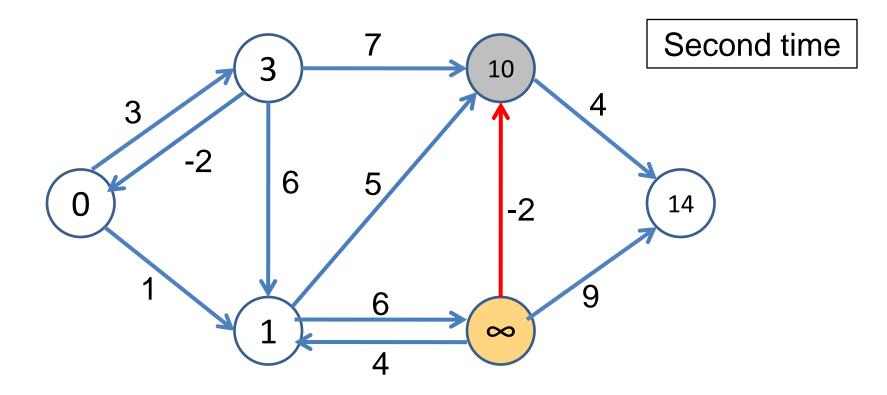


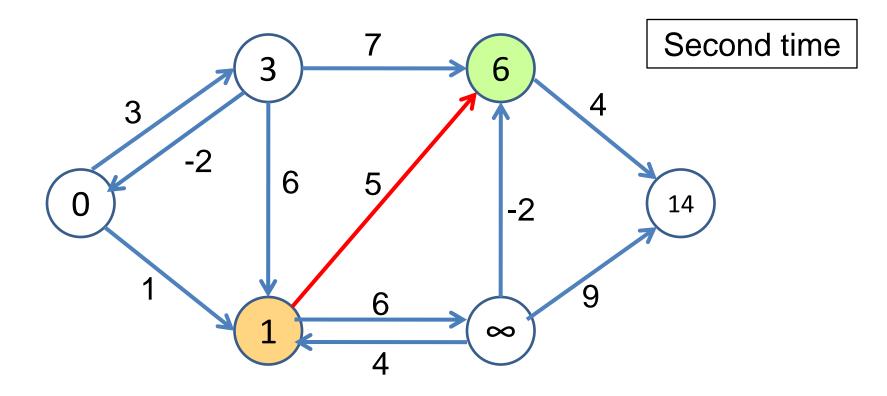


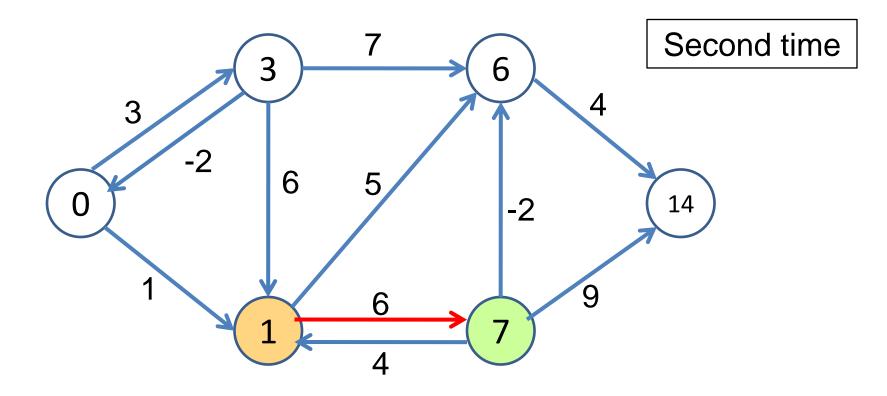


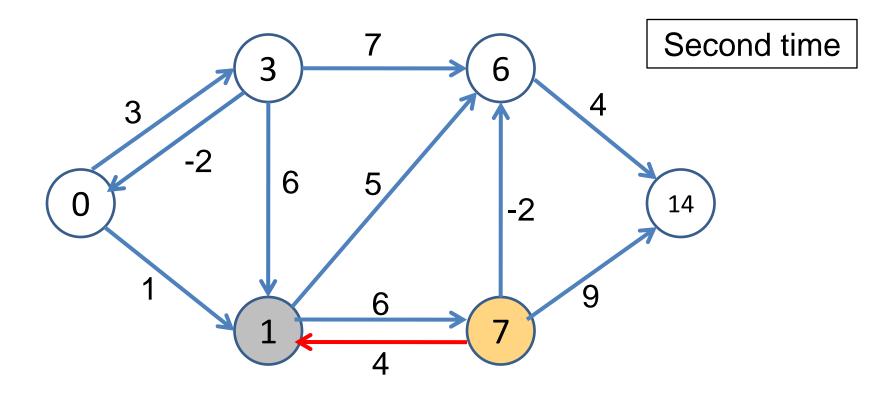


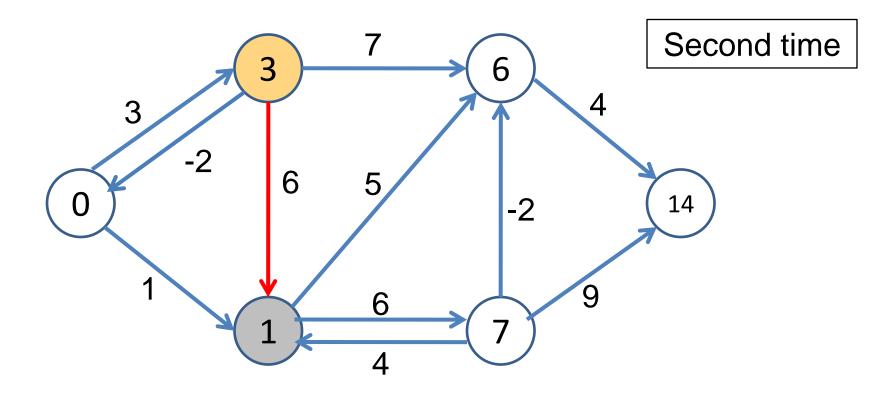


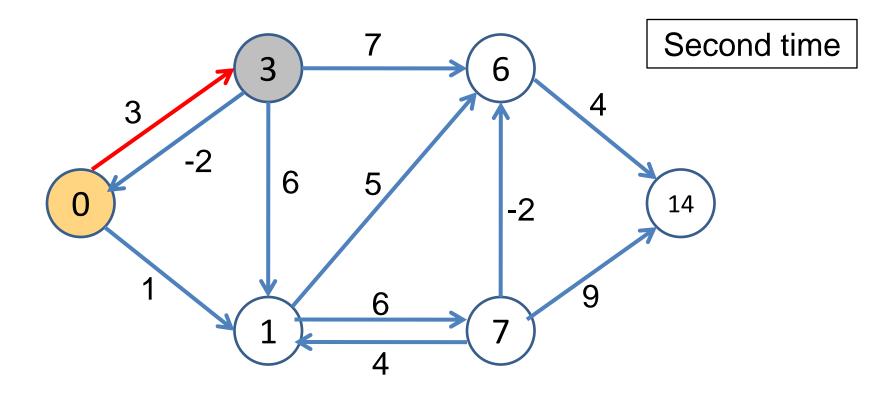


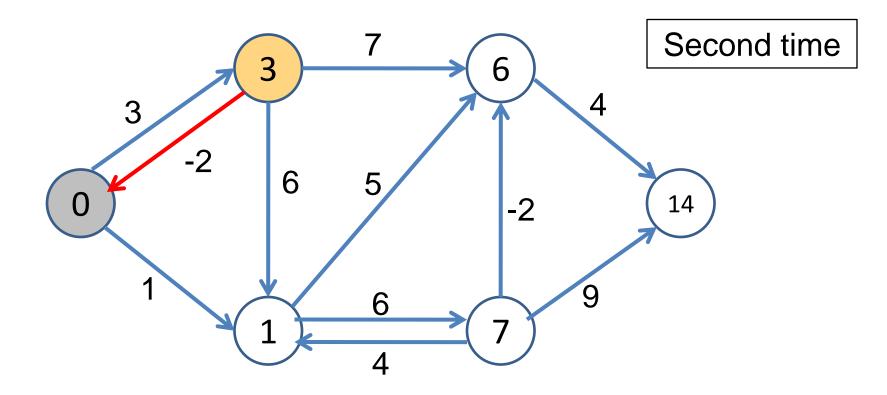


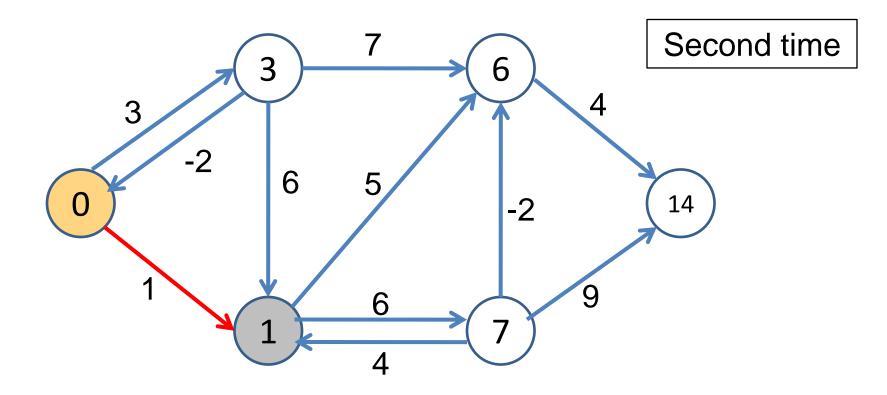


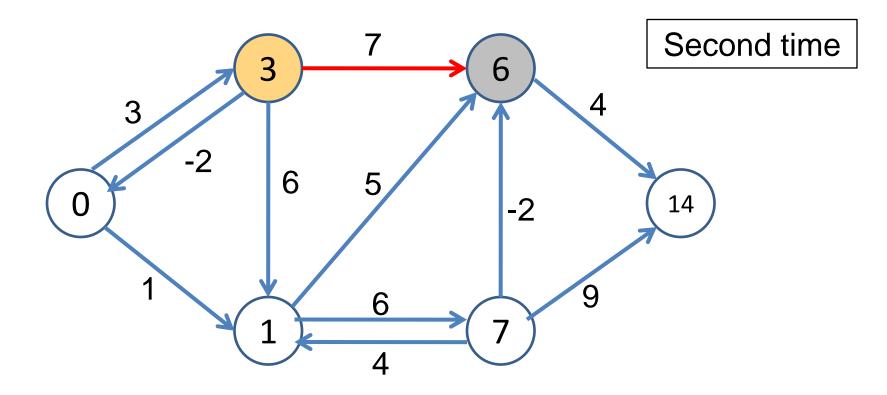


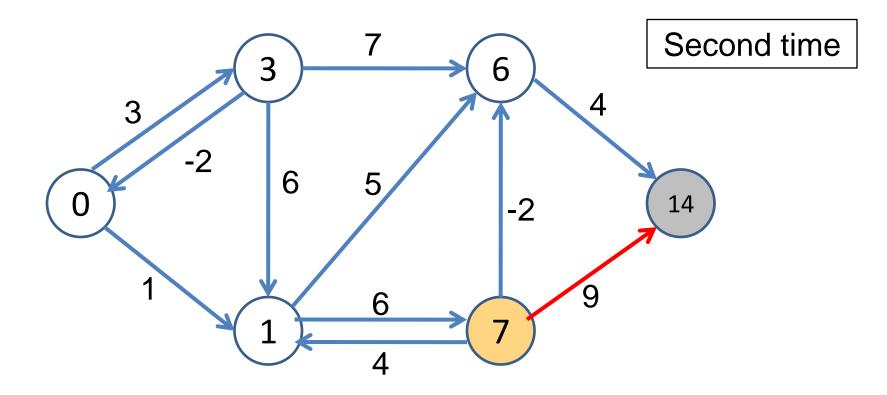


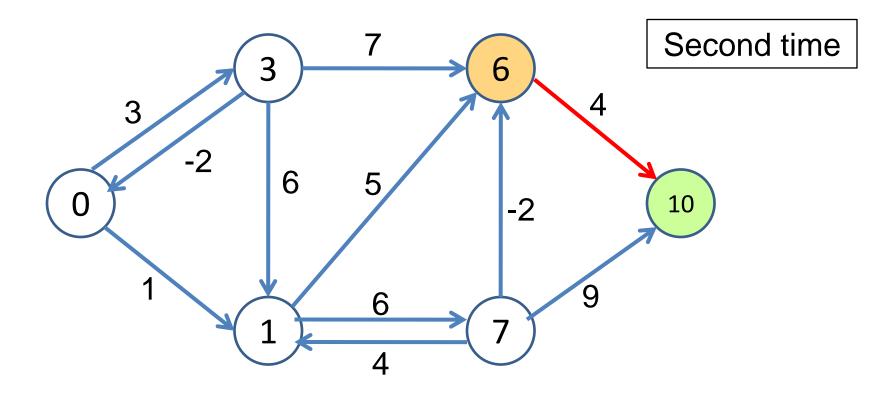


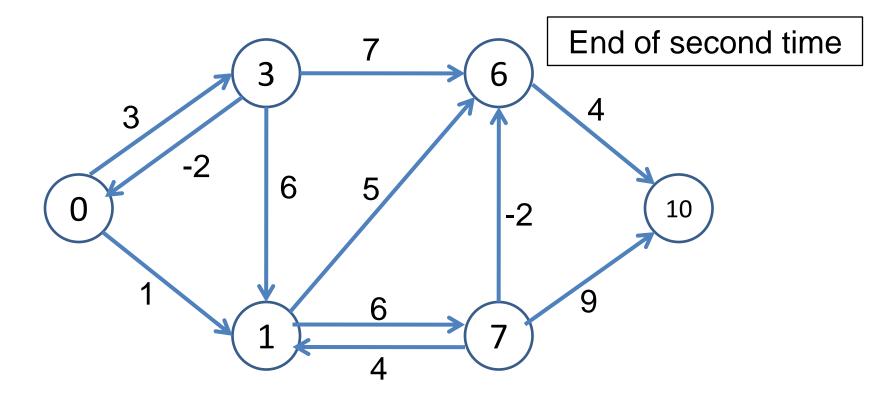


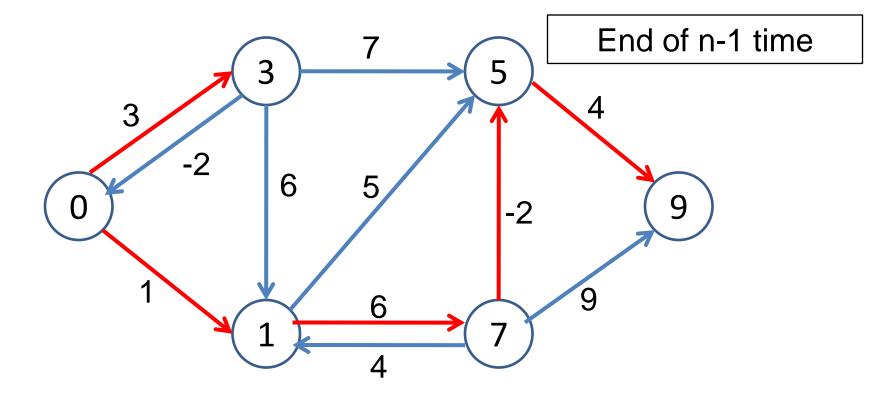






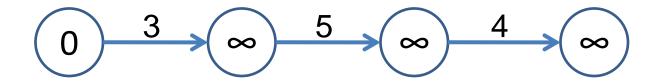




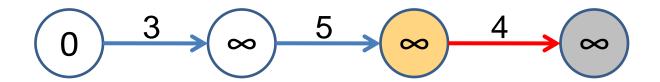


• Why n-1 time(s)?

• Why n-1 time(s)?



• Why n-1 time(s)?



• Why n-1 time(s)?

• Why n-1 time(s)?

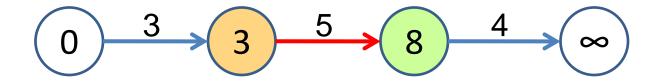


• Why n-1 time(s)?

2nd time

• Why n-1 time(s)?

2nd time

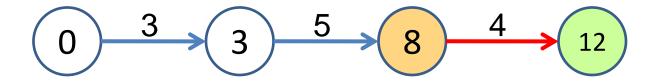


• Why n-1 time(s)?

2nd time

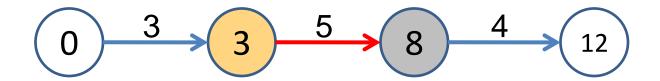
• Why n-1 time(s)?

3rd time



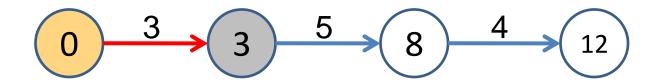
• Why n-1 time(s)?

3rd time



• Why n-1 time(s)?

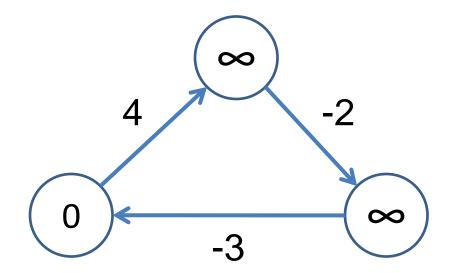
3rd time

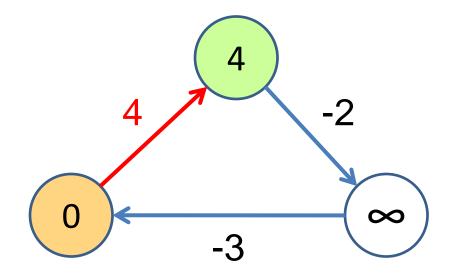


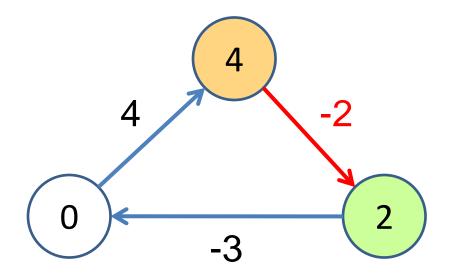
Pseudo code

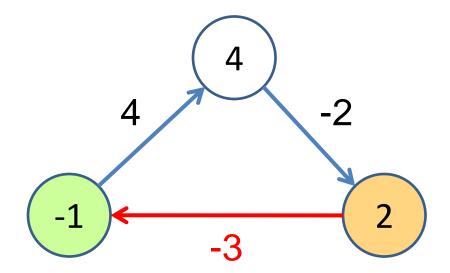
Practice1

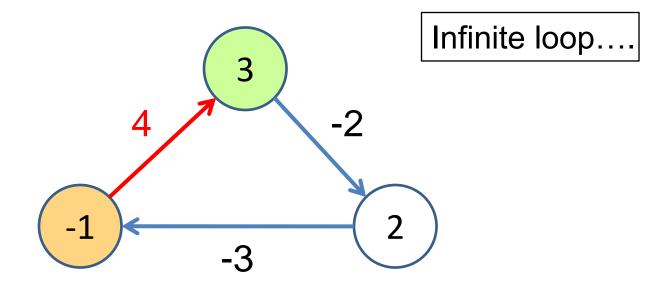
POJ 2387 - Til the Cows Come Home











- Relax 1 more time after n-1 times
 - If relax successfully, negative cycle exists.

- 若找到負環,是位於整張圖上的某處
 - Source不見得可以走的到該負環

Pseudo code

```
BellmanFord(){
        // Initialize
        dis[source]=0;
        dis[i]=INF, for all i!=source
        for(i=0;i<n-1;i++)
             for each edge w(u,v) in G
 9
                 Relax(u,v,w);
10
11
12
        for each edge w(u,v) in G
             if(dis[u]+w(u,v)<dis[v])</pre>
13
14
                 return true;
        return false;
```

分 63

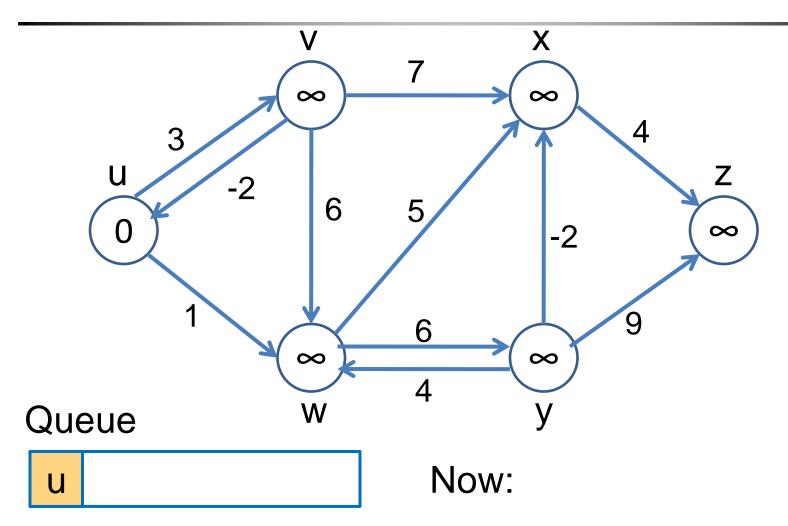
Practice2

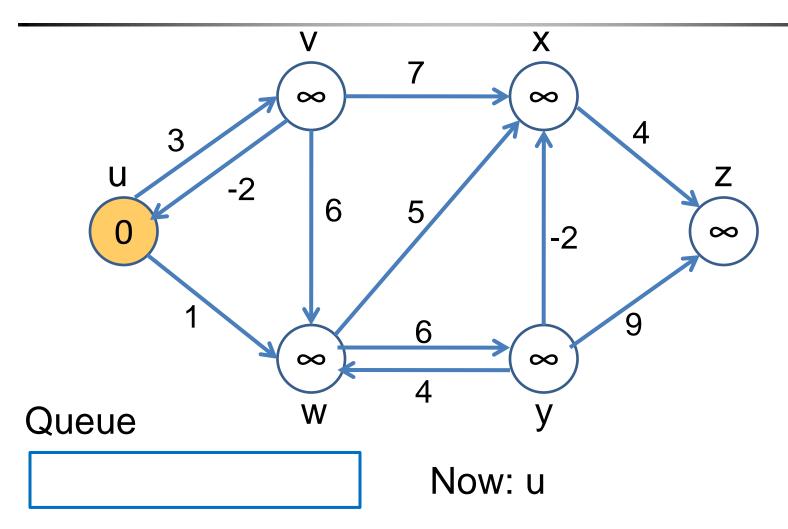
• POJ 3259 - Wormhole

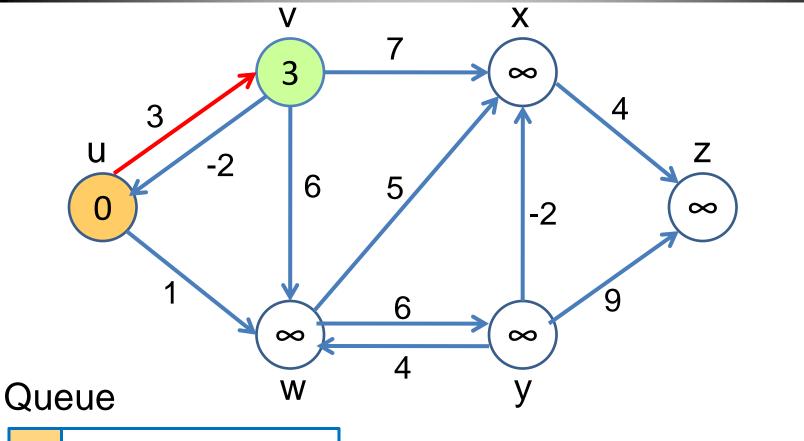
Shortest Path Faster Algorithm

- In Bellman Ford, relax n-1 times
 - Do we really need n-1 times…?
 - Only relax the one whose cost changed!

Queue



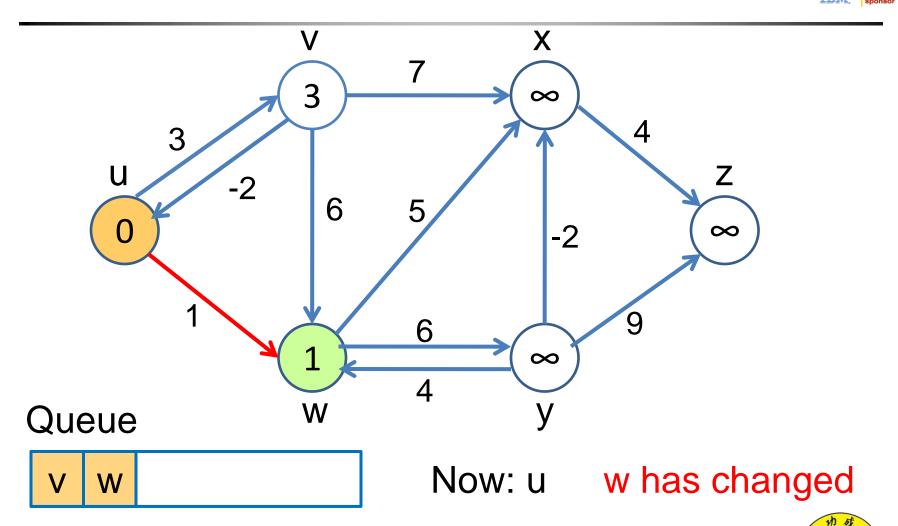


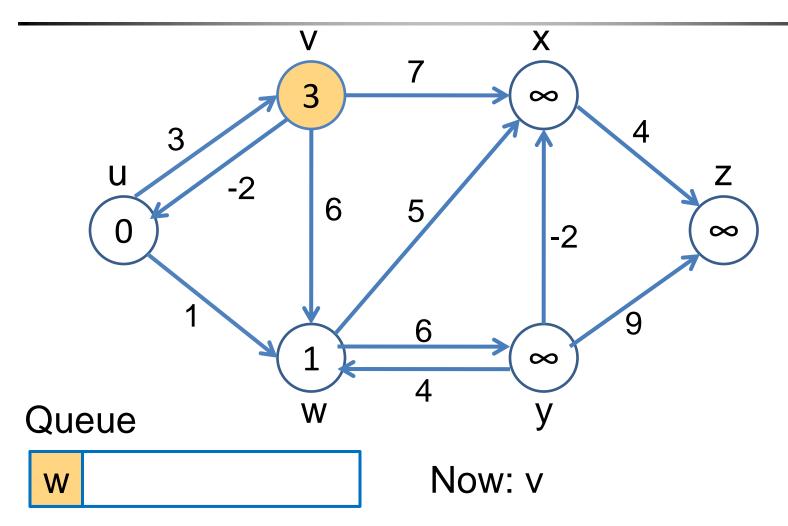


Now: u v has changed

acm International Collegiate Programming Contest

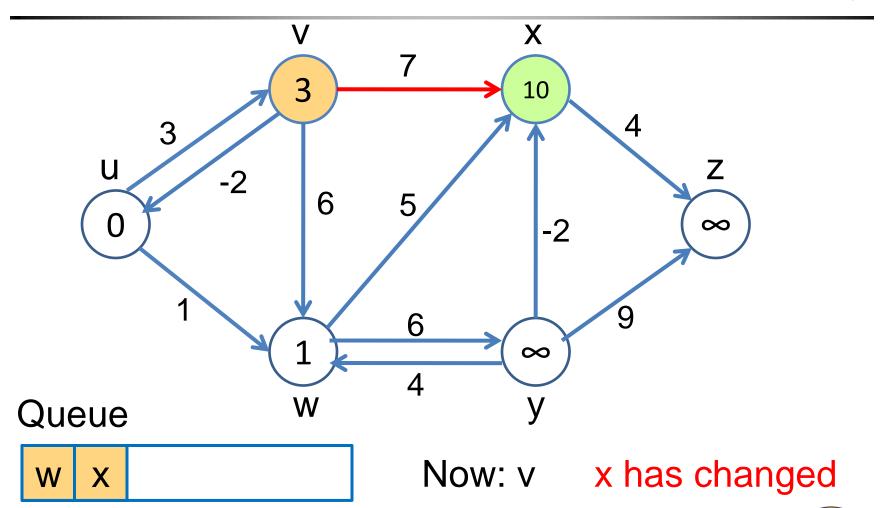
SPFA



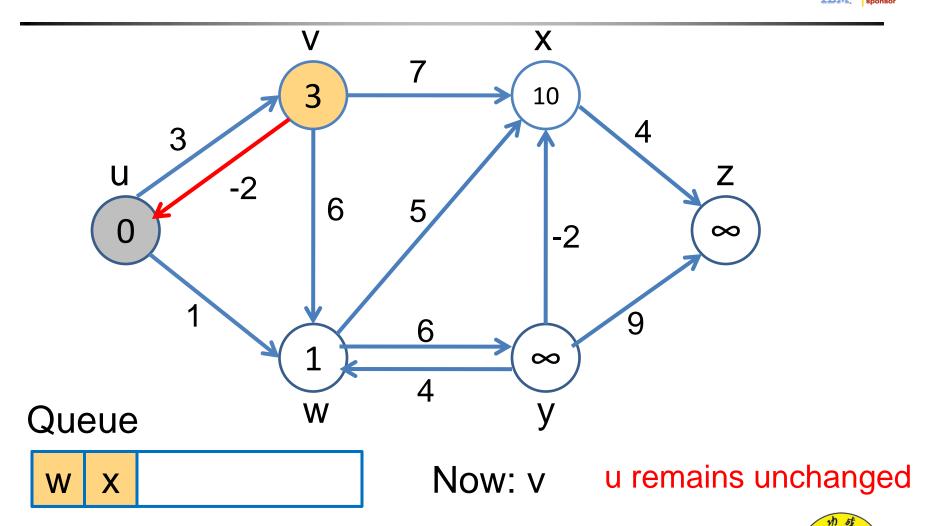


acm International Collegiate Programming Contest

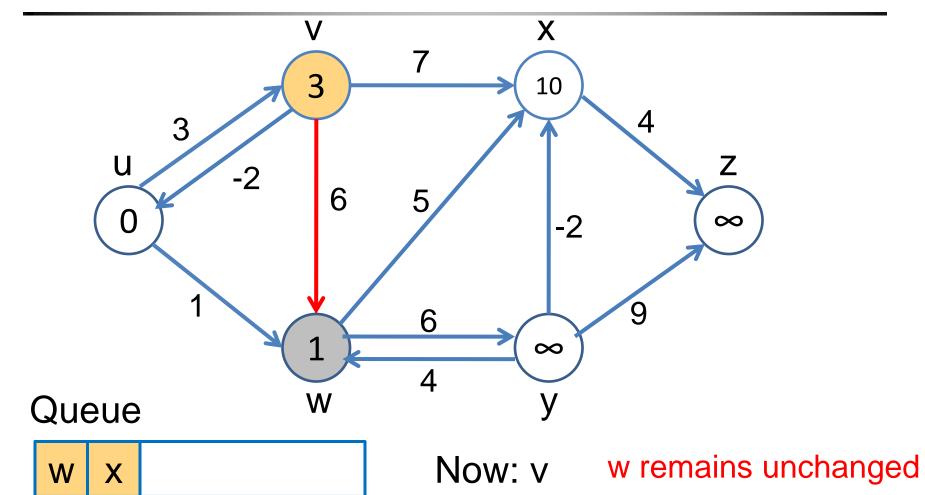
SPFA



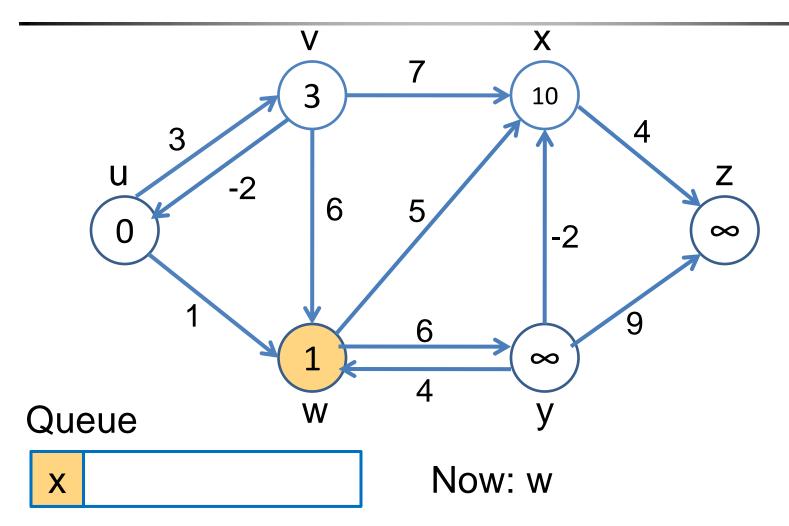
Competitive Algorithm Design and Practice

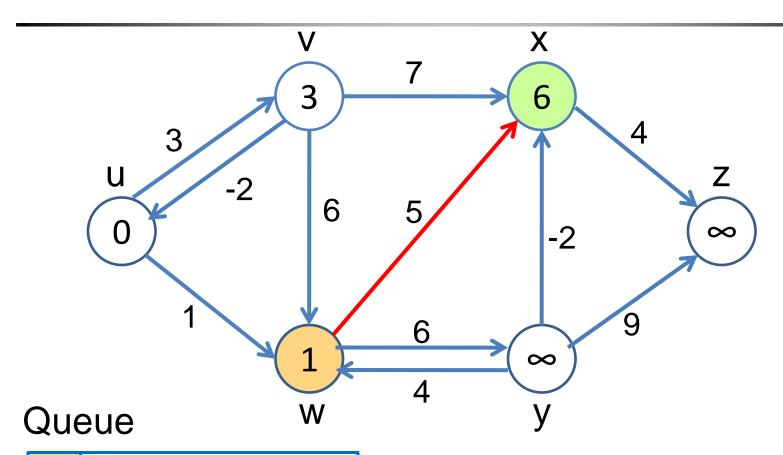


SPFA



Competitive Algorithm Design and Practice



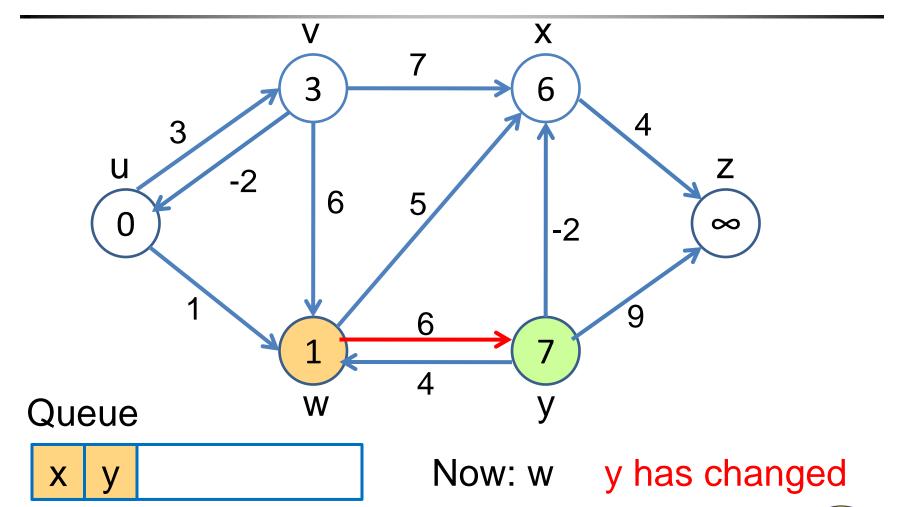


X

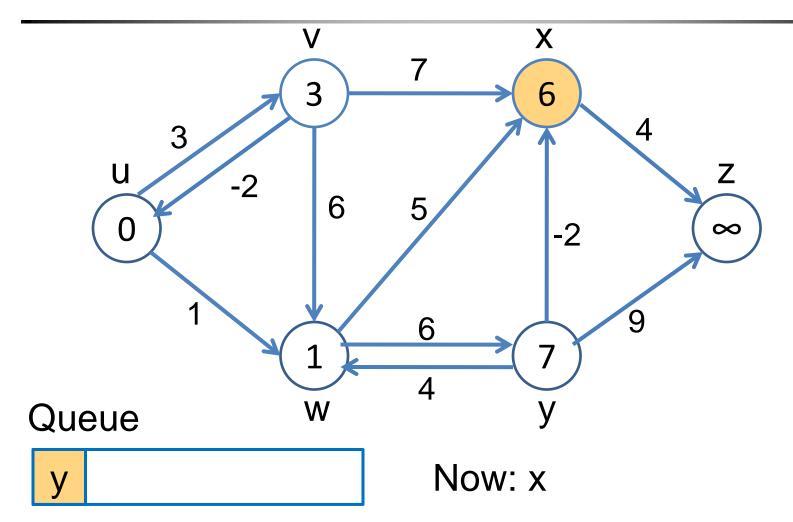
already in queue

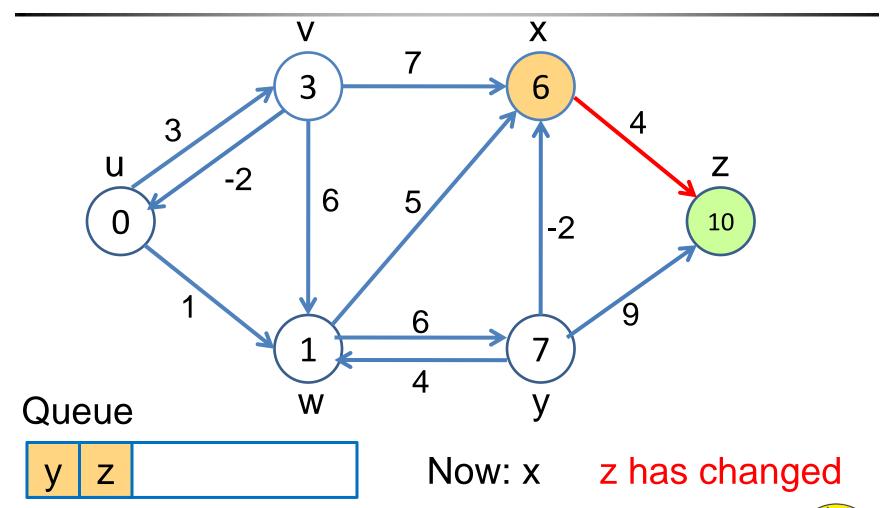
Now: w x has changed

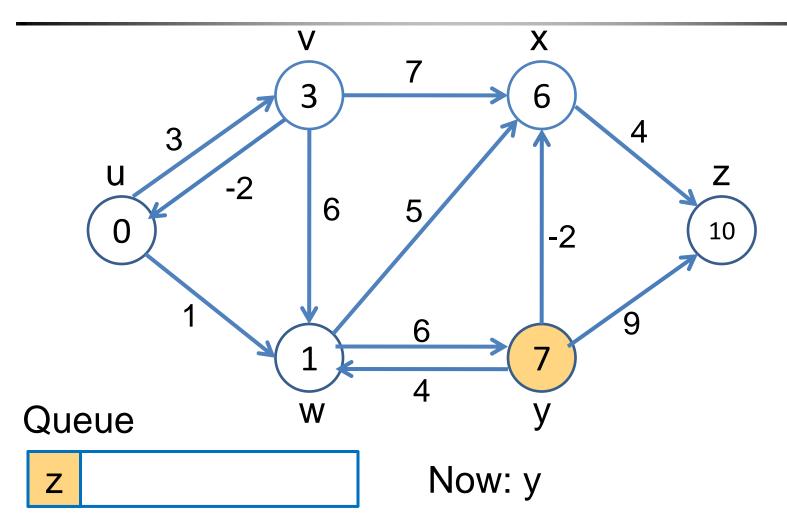
SPFA



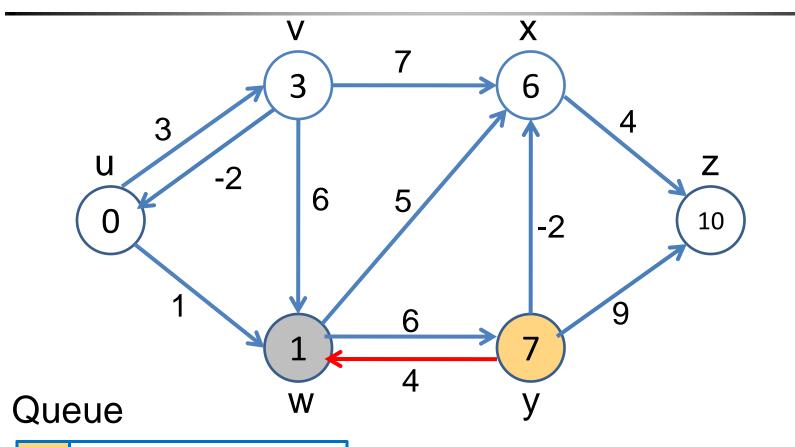
Competitive Algorithm Design and Practice







SPFA

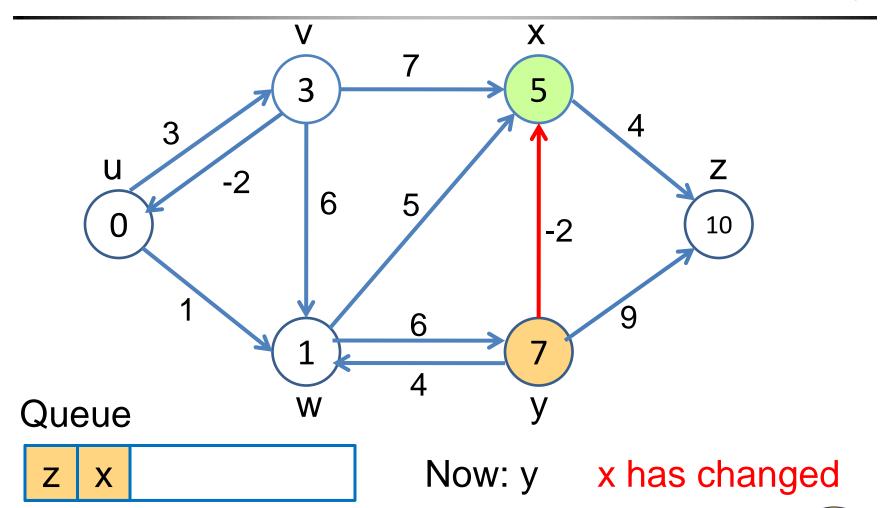


Z

Now: y

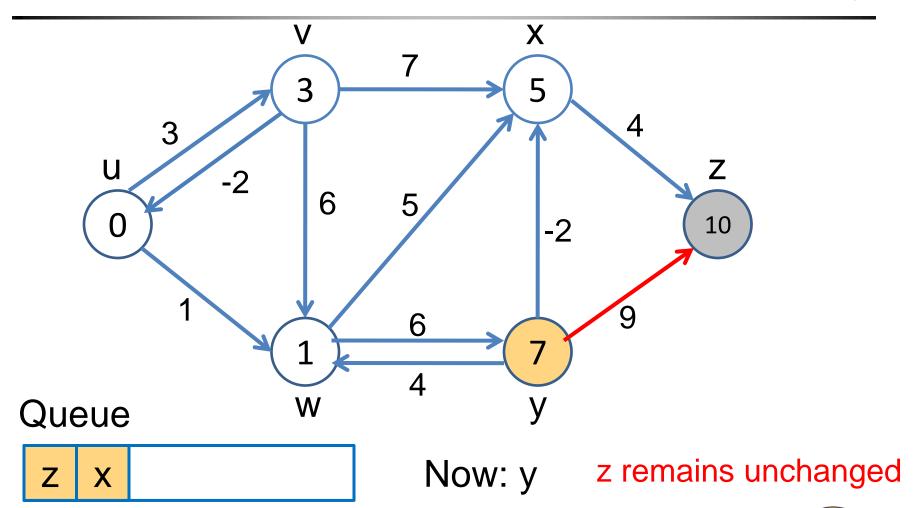
w remains unchanged

SPFA

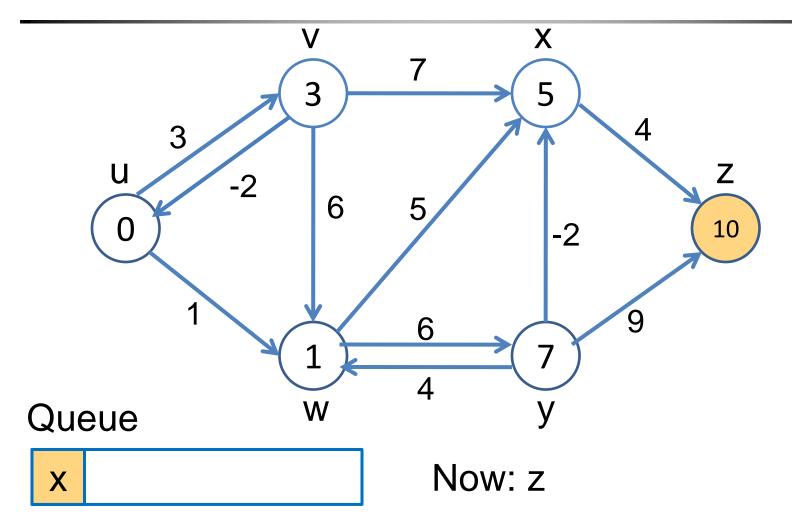


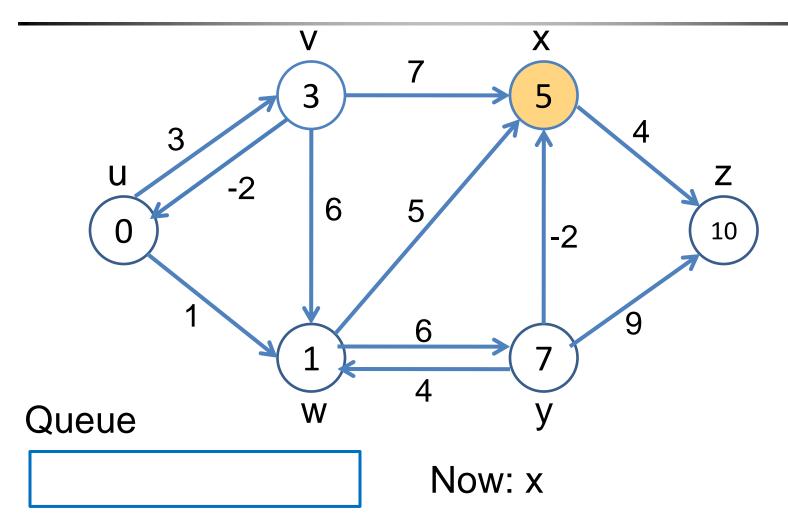
Competitive Algorithm Design and Practice

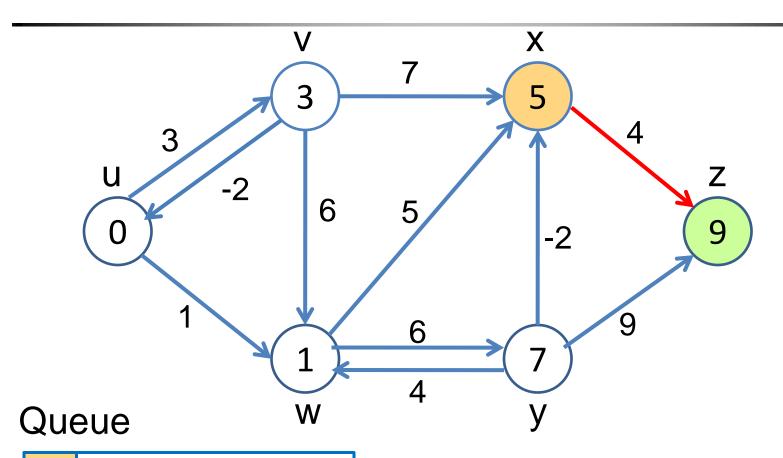
SPFA



Competitive Algorithm Design and Practice

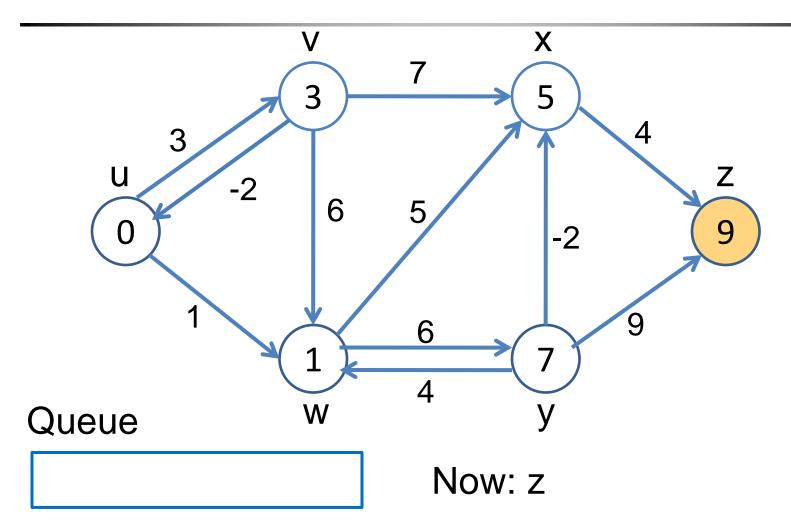


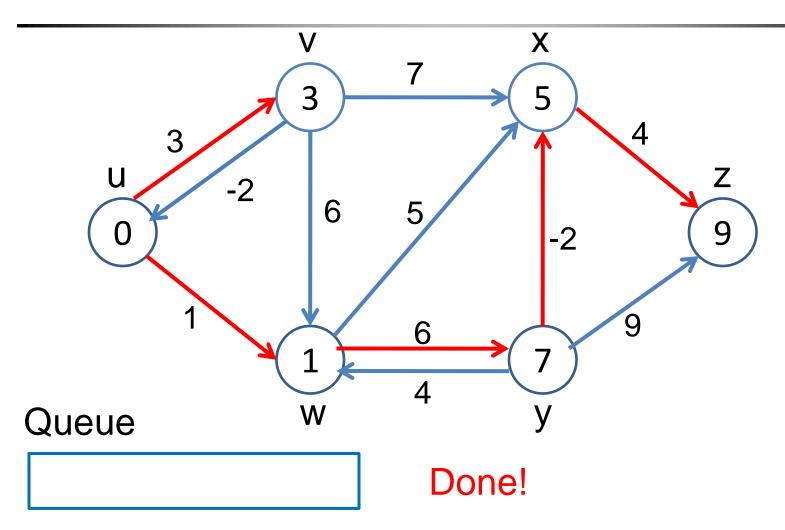




Z

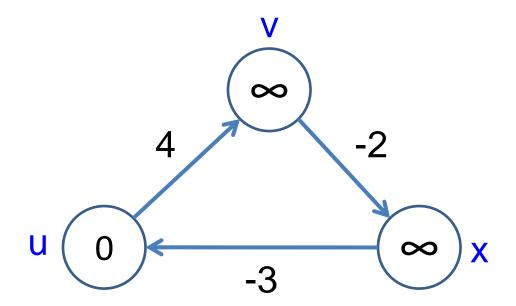
Now: x z has changed






```
SPFA(){
        dis[i]=INF, inqueue[i]=false, for all i
        dis[source]=0;
 4
        inqueue[source]=true;
        queue.push(source);
        while(!queue.empty()){
 6
            now=queue.front();
 8
             inqueue[now]=false;
             queue.pop();
10
             for each node v adjacent to now{
                 if(dis[now]+w(now,v)<dis[v]){</pre>
11
                     dis[v]=dis[now]+w(now,v);
12
13
                     if(!inqueue[v]){
14
                         queue.push(v);
                          inqueue[v]=true;
15
16
17
18
19
20
```

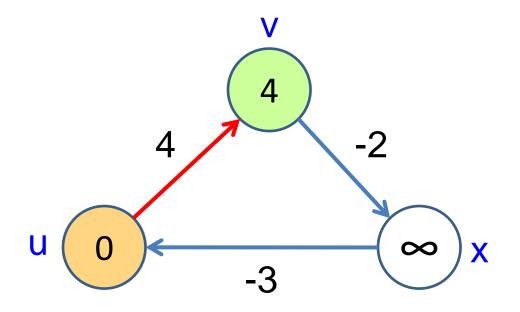

Negative cycle?



Queue

u

Negative cycle?

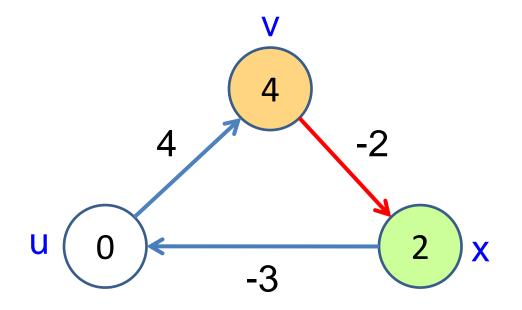


Queue

Now: u

v has changed

Negative cycle?

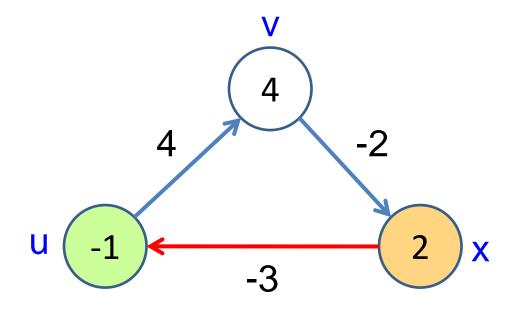


Queue

Now: v

x has changed

Negative cycle?



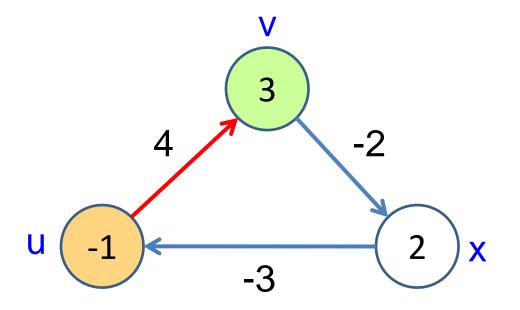
Queue

u

Now: x

u has changed

Negative cycle?



Queue

Now: u

v has changed

Infinite Loop...

- Count the times of pushing a node in queue
 - No more than n-1 times
 - Otherwise, negative cycle exists.

- 若找到負環,必是由source出發後遇到的負環
 - source走不到的地方無從得知


```
SPFA(){
        dis[i]=INF, inqueue[i]=false, count[i]=0 for all i
        dis[source]=0;
        inqueue[source]=true;
        queue.push(source);
        while(!queue.empty()){
            now=queue.front();
            inqueue[now]=false;
            queue.pop();
 9
10
             for each node v adjacent to now{
                 if(dis[now]+w(now,v)<dis[v]){</pre>
11
12
                     dis[v]=dis[now]+w(now,v);
13
                     if(!inqueue[v]){
14
                         queue.push(v);
15
                         inqueue[v]=true;
16
                         count[v]++;
                         if(count[v]>=n) return true;
18
19
20
21
22
        return false;
```

Competitive Algorithm Design and Practice

- Complexity
 - O(kE), where k<<V, for average case</p>
 - O(VE), for worst case

Bellman Ford vs SPFA

	Bellman Ford	SPFA
Edge	Discrete data structure	Adjacency list
Negative cycle	Some where in Graph	From source
Complexity	O(VE)	O(kE)

All Pair Shortest Path

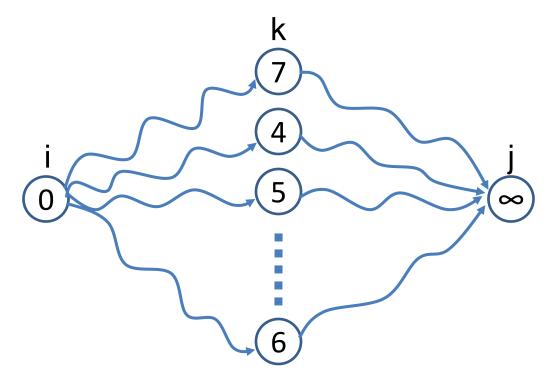
APSP

- How?
 - Bellman Ford * V times: O(V²E)
 - SPFA * V times: O(kVE)

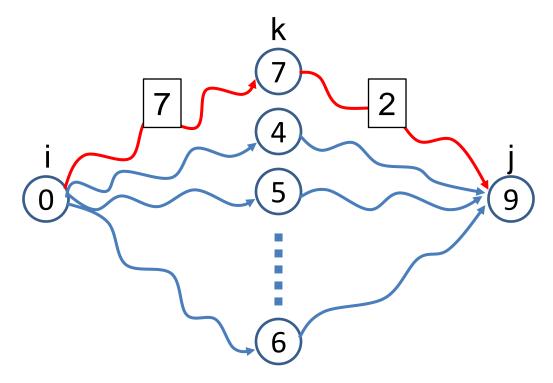
- Floyd-Warshall algorithm
 - $-O(V^3)$

- Enumerate all node k as relay point
 - Repeat for each pair(i,j)

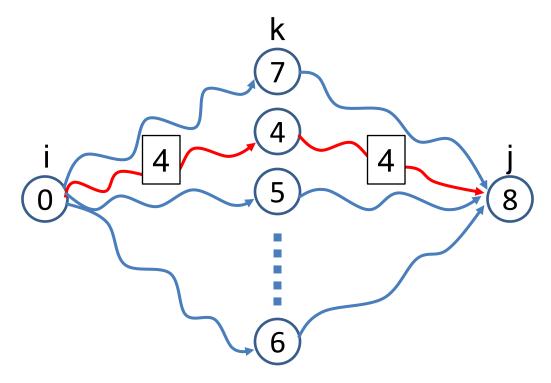
- Enumerate all node k as relay point
 - Repeat for each pair(i,j)



- Enumerate all node k as relay point
 - Repeat for each pair(i,j)

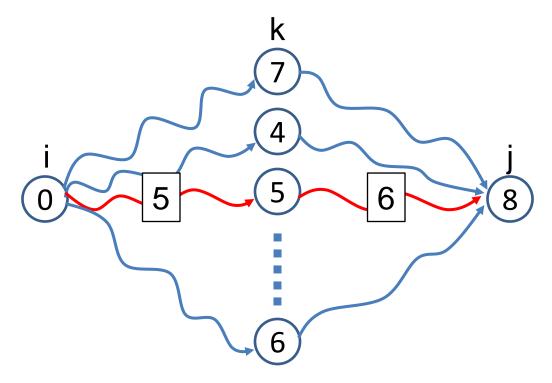


- Enumerate all node k as relay point
 - Repeat for each pair(i,j)

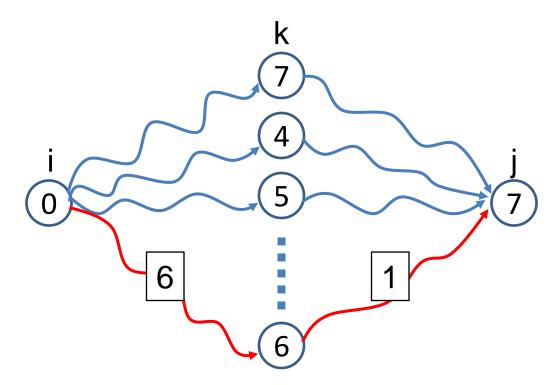


Floyd

- Enumerate all node k as relay point
 - Repeat for each pair(i,j)



- Enumerate all node k as relay point
 - Repeat for each pair(i,j)



Floyd

Pseudo code

```
1 Floyd(){
2    dis[i][j]=0, for i=j
3    dis[i][j]=w(i,j), for each edge w(i,j)
4    dis[i][j]=INF, otherwise.
5    for(k=0;k<n;k++)
6         for(i=0;i<n;i++)
7         for(j=0;j<n;j++)
8         if(dis[i][k]+dis[k][j]<dis[i][j])
9         dis[i][j]=dis[i][k]+dis[k][j];
10 }</pre>
```


- Complexity
 - $-O(V^3)$

- Complexity
 - $-O(V^3)$

- How about multiple edges between (a,b)?
 - Use the shortest one

Practice3

POJ 1125 - Stockbroker Grapevine

Summary

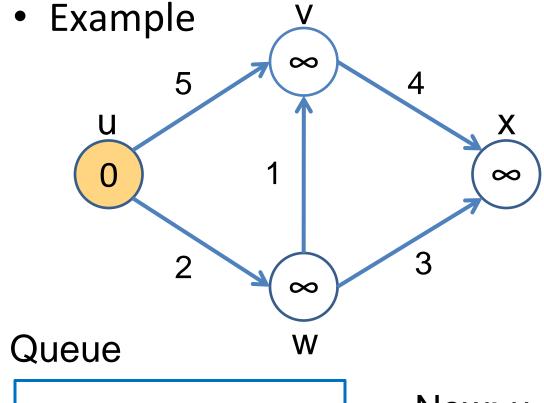
- SSSP:
 - Bellman Ford
 - SPFA
 - Dijkstra (Google it by yourself)

- APSP:
 - Floyd
 - SPFA * V times (Sometimes better than Floyd)

- How to output one of shortest paths?
 - Table: record the previous one

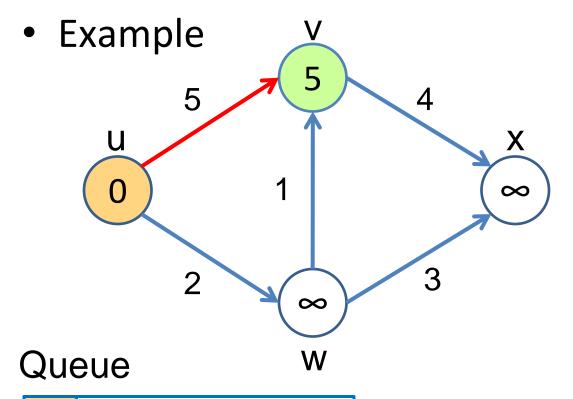
- How to output one of shortest paths?
 - Table: record the previous one

Once relax successfully, update prev[id].



id	prev[id]
u	None
V	None
W	None
X	None

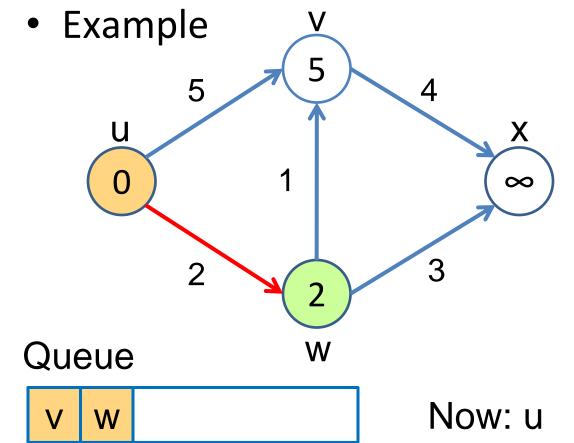
Now: u



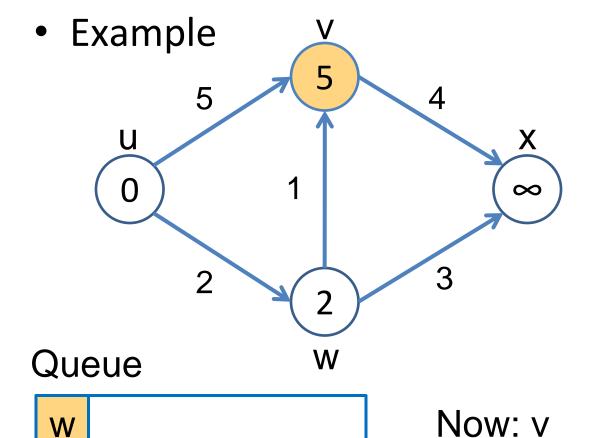
id	prev[id]
u	None
V	u
W	None
X	None

V

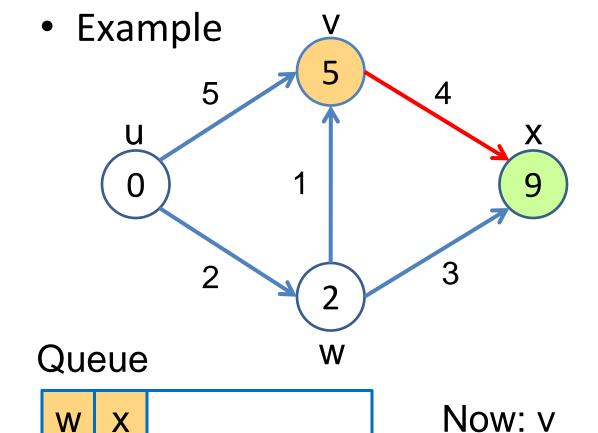
Now: u



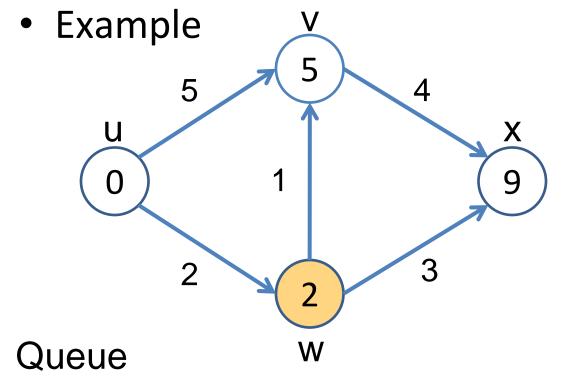
id	prev[id]
u	None
V	u
W	u
X	None



id	prev[id]
u	None
V	u
W	u
X	None



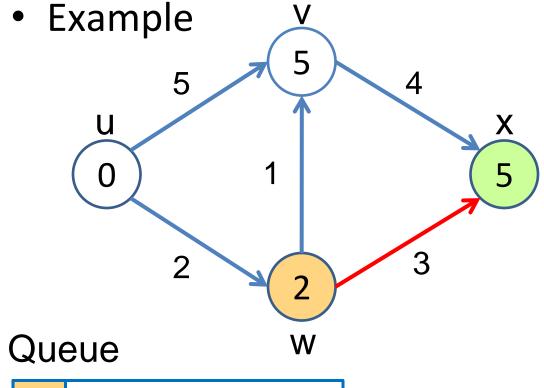
id	prev[id]
u	None
V	u
W	u
X	V



id	prev[id]
u	None
V	u
W	u
X	V

X

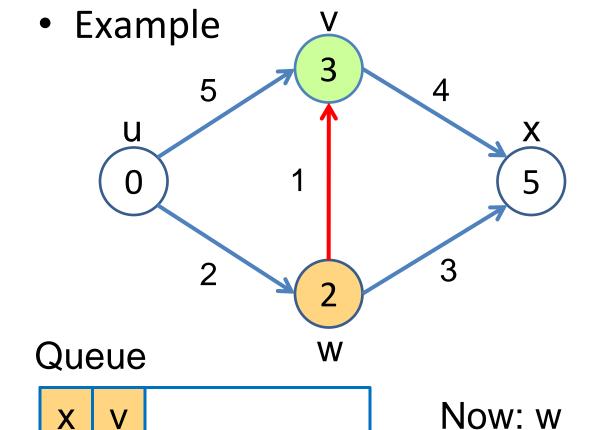
Now: w



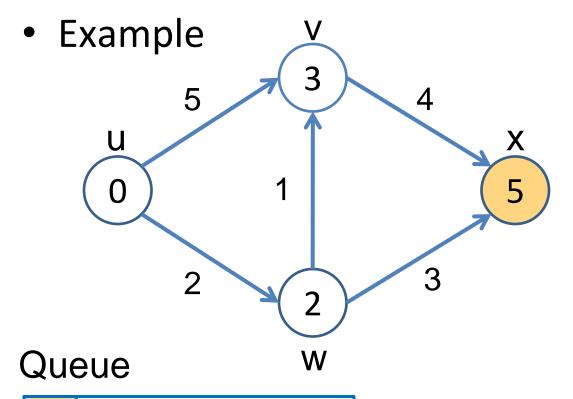
id	prev[id]
u	None
V	u
W	u
X	W

X

Now: w



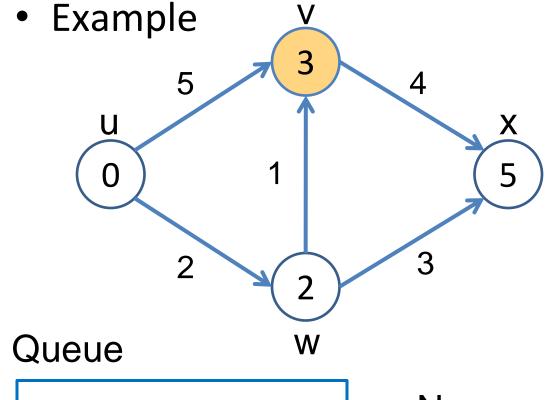
id	prev[id]
u	None
V	W
W	u
X	W



id	prev[id]
u	None
V	W
W	u
X	W

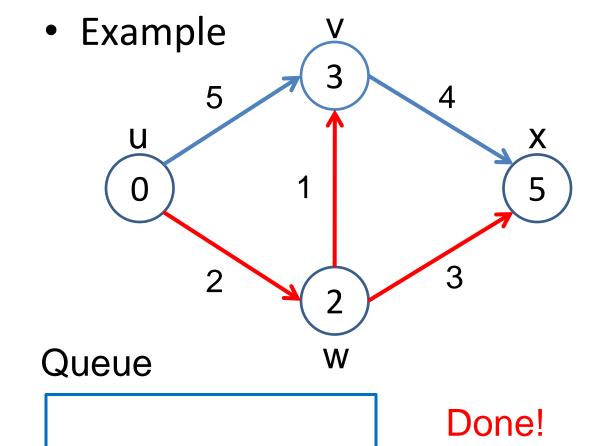
V

Now: x



id	prev[id]
u	None
V	W
W	u
X	W

Now: v



id	prev[id]
u	None
V	W
W	u
X	W

Thank you for your attention!

