

NCKU Programming Contest Training Course 2017/03/22

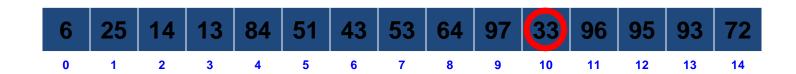
Po-Hsing Wu

s1994928@yahoo.com.tw

Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan

Outline

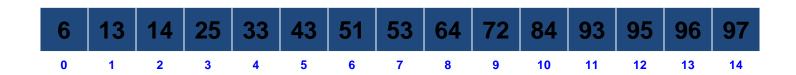
- Learn more
 - Operator overloading in struct



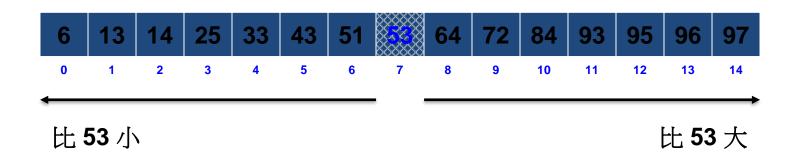
acm International Collegiate Programming Contest event sponsor

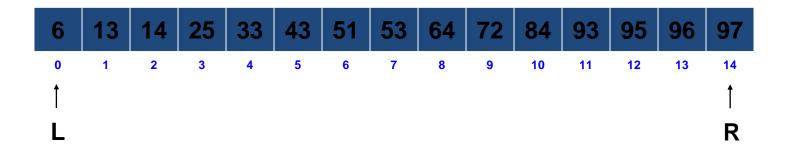
Linear Search

- Example
 - 從下方陣列中,找出小於 34 的<u>最大值</u>



• Linear search : O(n)


• 假設有個已經排序過後的序列

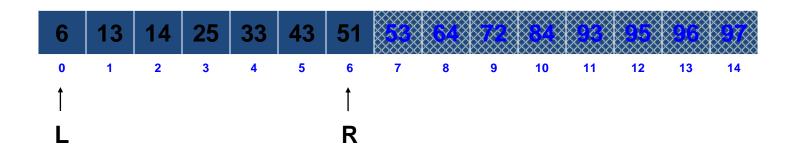

• 假設有個已經排序過後的序列

- Example
 - 從排序好的陣列中,找出小於34的最大值



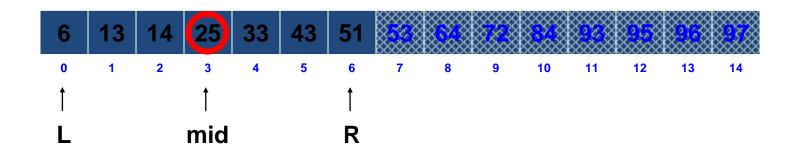
Example

$$- Index of mid = (L + R) / 2 = (0 + 14) / 2 = 7$$

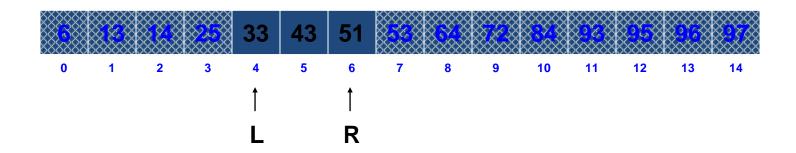


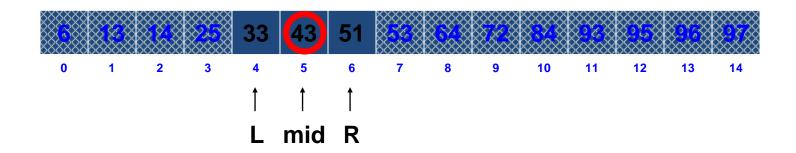
Example

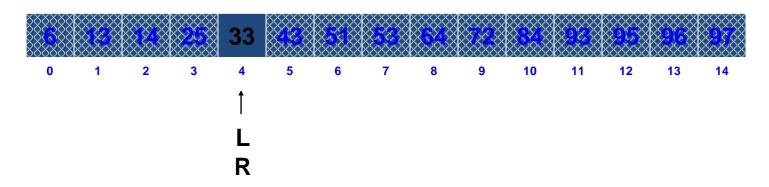
- 判斷 mid 有沒有小於 34 → 沒有,找左半部



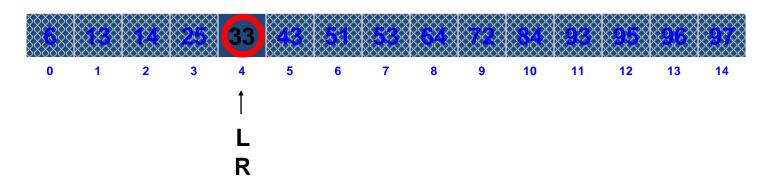
Example


$$- Index of mid = (L + R) / 2 = (0 + 6) / 2 = 3$$


- Example
 - 判斷 mid 有沒有小於 34 → 有,找右半部


- Example
 - Index of mid = (L + R) / 2 = (4 + 6) / 2 = 5

- Example
 - 判斷 mid 有沒有小於 34 → 沒有,找左半部



Example

- 小於 34 的最大值 = 33

Time Complexity

Linear search : O(n)

Binary search : O(lgn)


```
#include <cstdio>
int binary_search(int *numbers, int n, int val) {
      int left = 0, right = n - 1;
      while(left < right) {</pre>
            int middle = (left + right) / 2;
            if (numbers[middle] < val) {</pre>
                  left = middle + 1;
            } else {
                  right = middle - 1;
      }
      return right;
}
int main() {
      int array[] = {6, 13, 14, 25, 33, 43, 51, 53, 64, 72, 84, 93, 95, 96, 97};
      printf("%d\n", binary_search(array, 15, 34)); // 4
      return 0;
}
```


UVa 10341

Problem Description

Solve

$$p^*e^{-x} + q^*\sin(x) + r^*\cos(x) + s^*\tan(x) + t^*x^2 + u = 0$$

Where

$$0 \le p, r \le 20 \text{ and } -20 \le q, s, t \le 0$$

$$0 <= x <= 1$$

lower/upper_bound

• Binary Search 不用自己寫,STL 替你完成一切

```
#include <cstdio>
#include <algorithm>

using namespace std;

int main() {
    int array[] = {6, 13, 14, 25, 33, 43, 51, 53, 64, 72, 84, 93, 95, 96, 97};
    printf("%d\n", lower_bound(array, array + 15, 34) - array - 1);

    return 0;
}
```


Learn more: Operator overloading in struct

struct

- Q. 如何直接利用 < 來比較 struct?
- A. 運算子重載

```
struct _DATA {
   int data1, data2;
   char data3;

  bool operator<(const struct _DATA &rhs) const {
    return data1 < rhs.data1;
   }
};</pre>
```


struct

- Q. 如何用 lower/upper_bound 搜尋 struct?
- A. 運算子重載

```
struct _DATA {
   int data1, data2;
   char data3;

bool operator<(const int val) const {
    return data1 < val;
   }
};</pre>
```

