
���&��������
&����
&����� NCKU CSIE Programming Contest Training Course

NCKU Programming Contest Training Course
Time Complexity & Sorting

2017/02/16

Jingfei Yang
e84016184@mail.ncku.edu.tw

http://myweb.ncku.edu.tw/~e84016184/sorting.pdf

Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan, Taiwan

Made By kevinx6000 20

Time Complexity

Made By kevinx6000 21

Time Complexity

• How to evaluate the execution time?

Made By kevinx6000 22

Time Complexity

• Technical Analysis!!

Made By kevinx6000 23

Time Complexity

• k nested loops with n iterations each:

– O(nk)

Made By kevinx6000 24

Time Complexity

• k nested loops with n iterations each:

– O(nk)

• b recursive calls per level with maximum L levels:

– O(bL)

Made By kevinx6000 25

Time Complexity

• k nested loops with n iterations each:

– O(nk)

• b recursive calls per level with maximum L levels:

– O(bL)

• Process 2D n*m matrix with k op. each cell:

– O(n x m x k)

Made By kevinx6000 26

Time Complexity

• Examples

• for(i=0;i<n;i++)
if(…..) ….

• O(n)

Made By kevinx6000 27

Time Complexity

• Examples

• for(i=0;i<n;i++)
for(j=0;j<n;j++)

if(…..) ….

• O(n2)

Made By kevinx6000 28

Time Complexity

• Examples

• int two(int n){
if(n<2) return 1<<n;
return two(n-1)+two(n-1);

}
/* maximum n=M */

• O(2M)

Made By kevinx6000 29

Time Complexity

• Given Input Size n = 1,000:

– O(n) =

– O(n2) =

– O(nlgn) =

• Given Input Size n = 1,000,000:

– O(n) =

– O(n2) =

– O(nlgn) =

Made By kevinx6000 30

Time Complexity

• Given Input Size n = 1,000:

– O(n) = O(1,000) OK
– O(n2) = O(1,000,000) OK
– O(nlgn) ≒ O(9965) OK

• Given Input Size n = 1,000,000:

– O(n) = O(1,000,000) OK
– O(n2) = O(1,000,000,000,000) Not good. Why…?

– O(nlgn) ≒ O(9,965,784) OK

Made By kevinx6000 31

Time Complexity

n Worst AC Algorithm

≦[10..11] O(n!), O(n6)

≦[15..18] O(2n x n2)

≦[18..22] O(2n x n)

≦100 O(n4)

≦400 O(n3)

≦2K O(n2log2n)

≦10K O(n2)

≦1M O(nlog2n)

≦100M O(n), O(log2n), O(1)

*A typical year 2013
CPU can process
100M operations in
few seconds.

*Referenced from
Competitive
Programming, 3ed.

Made By kevinx6000 32

Time Complexity

• But!!

• The actual running time depends on your actual
number of operations and CPU power.

• For safety: 106 - 107 => ≦ 3 seconds

– Modern computers

Made By kevinx6000 33

Sorting

Made By kevinx6000 34

What is sorting?

• Order the sequence by some rules

• Ex: ascending order

– 6 5 1 4 3 2

– 1 2 3 4 5 6

Made By kevinx6000 35

Bubble Sort

• Original

6 5 1 4 3 2

Made By kevinx6000 36

Bubble Sort

• Swap

5 6 1 4 3 2

Made By kevinx6000 37

Bubble Sort

• Swap

5 1 6 4 3 2

Made By kevinx6000 38

Bubble Sort

• Swap

5 1 4 6 3 2

Made By kevinx6000 39

Bubble Sort

• Swap

5 1 4 3 6 2

Made By kevinx6000 40

Bubble Sort

• Swap

5 1 4 3 2 6

Made By kevinx6000 41

Bubble Sort

• End of First Iteration

5 1 4 3 2 6

Made By kevinx6000 42

Bubble Sort

• Swap

1 5 4 3 2 6

Made By kevinx6000 43

Bubble Sort

• Swap

1 4 5 3 2 6

Made By kevinx6000 44

Bubble Sort

• Swap

1 4 3 5 2 6

Made By kevinx6000 45

Bubble Sort

• Swap

1 4 3 2 5 6

Made By kevinx6000 46

Bubble Sort

• End of Second Iteration

1 4 3 2 5 6

Made By kevinx6000 47

Bubble Sort

• And so on….

1 4 3 2 5 6

1 3 2 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Done.

Made By kevinx6000 48

Bubble Sort

• Code

// Bubble Sort
for(i=n-1;i>0;i--){

for(j=0;j<i;j++){
if(ary[j]>ary[j+1]){

tmp=ary[j];
ary[j]=ary[j+1];
ary[j+1]=tmp;

}
}

}

Made By kevinx6000 49

Insertion Sort

• Original

6 5 1 4 3 2

Made By kevinx6000 50

Insertion Sort

• Choose one to insert

6 5 1 4 3 2

Made By kevinx6000 51

Insertion Sort

• If value larger than chosen, then shift

6 1 4 3 2

5

Made By kevinx6000 52

Insertion Sort

• Insert

5 6 1 4 3 2

Made By kevinx6000 53

Insertion Sort

• Choose one to insert

5 6 1 4 3 2

Made By kevinx6000 54

Insertion Sort

• Shift

5 6 4 3 2

1

Made By kevinx6000 55

Insertion Sort

• Shift

5 6 4 3 2

1

Made By kevinx6000 56

Insertion Sort

• Insert

1 5 6 4 3 2

Made By kevinx6000 57

Insertion Sort

• Choose one to insert

1 5 6 4 3 2

Made By kevinx6000 58

Insertion Sort

• Shift

1 5 6 3 2

4

Made By kevinx6000 59

Insertion Sort

• Shift

1 5 6 3 2

4

Made By kevinx6000 60

Insertion Sort

• Insert

1 4 5 6 3 2

Made By kevinx6000 61

Insertion Sort

• And so on…

1 4 5 6 3 2

1 3 4 5 6 2

1 2 3 4 5 6

Done.

Made By kevinx6000 62

Insertion Sort

• Code

// Insertion Sort
for(i=1;i<n;i++){
tmp=ary[i];
for(j=i-1;j>=0;j--){
if(ary[j]>tmp) ary[j+1]=ary[j];
else break;

}
ary[j+1]=tmp;

}

Made By kevinx6000 63

Example 1

UVa 10327 - Flip Sort

Sorting in computer science is an important part. Almost every problem

can be solved effeciently if sorted data are found. There are some
excellent sorting algorithm which has already acheived the lower bound
nlgn. In this problem we will also discuss about a new sorting approach. In
this approach only one operation (Flip) is available and that is you can
exchange two adjacent terms. If you think a while, you will see that it is
always possible to sort a set of numbers in this way.

A set of integers will be given. Now using the above approach we want to
sort the numbers in ascending order. You have to find out the minimum
number of flips required. Such as to sort "1 2 3" we need no flip operation
whether to sort "2 3 1" we need at least 2 flip operations.

Made By kevinx6000 64

Example 1

The Input
The input will start with a positive integer N (N<=1000). In
next few lines there will be N integers. Input will be
terminated by EOF.

The Output
For each data set print "Minimum exchange operations : M"
where M is the minimum flip operations required to perform
sorting. Use a seperate line for each case.

Sample Input
3 1 2 3
3 2 3 1

Sample Output
Minimum exchange operations : 0
Minimum exchange operations : 2

Made By kevinx6000 65

逆序數

• 逆序對
– ary[i] > ary[j] for some i < j

• 逆序數
– Sequence中所有逆序對的個數

Made By kevinx6000 66

Merge Sort

• Divide & Conquer

• O(nlgn)

Made By kevinx6000 67

Merge Sort

5 1 3 4 2

Made By kevinx6000 68

Merge Sort

5 1 3 4 2

5 1 3 4 2

Made By kevinx6000 69

Merge Sort

5 1 3 4 2

5 1 3 4 2

5 1 3

Made By kevinx6000 70

Merge Sort

5 1 3 4 2

5 1 3 4 2

5 1 3

5 1

Made By kevinx6000 71

Merge Sort

5 1 3 4 2

5 1 3 4 2

1 3

5 1

Made By kevinx6000 72

Merge Sort

5 1 3 4 2

5 1 3 4 2

1 5 3

5

Made By kevinx6000 73

Merge Sort

5 1 3 4 2

4 2

1 5 3

Made By kevinx6000 74

Merge Sort

5 1 3 4 2

1 4 2

1 5 3

Made By kevinx6000 75

Merge Sort

5 1 3 4 2

1 3 4 2

5 3

Made By kevinx6000 76

Merge Sort

5 1 3 4 2

1 3 5 4 2

5

Made By kevinx6000 77

Merge Sort

5 1 3 4 2

1 3 5 4 2

Made By kevinx6000 78

Merge Sort

5 1 3 4 2

1 3 5 4 2

4 2

Made By kevinx6000 79

Merge Sort

5 1 3 4 2

1 3 5

4 2

Made By kevinx6000 80

Merge Sort

5 1 3 4 2

1 3 5 2

4 2

Made By kevinx6000 81

Merge Sort

5 1 3 4 2

1 3 5 2 4

4

Made By kevinx6000 82

Merge Sort

1 3 5 2 4

Made By kevinx6000 83

Merge Sort

1

1 3 5 2 4

Made By kevinx6000 84

Merge Sort

1 2

3 5 2 4

Made By kevinx6000 85

Merge Sort

1 2 3

3 5 4

Made By kevinx6000 86

Merge Sort

1 2 3 4

5 4

Made By kevinx6000 87

Merge Sort

1 2 3 4 5

5

Made By kevinx6000 88

Merge Sort

1 2 3 4 5

Done!!

Made By kevinx6000 90

Example 2

UVa 10810 - Ultra-QuickSort
In this problem, you have to analyze a particular sorting algorithm.
The algorithm processes a sequence of ndistinct integers by swapping
two adjacent sequence elements until the sequence is sorted in
ascending order. For the input sequence9 1 0 5 4 ,Ultra-QuickSort
produces the output0 1 4 5 9 .Your task is to determine how many
swap operations Ultra-QuickSort needs to perform in order to sort a
given input sequence.The input contains several test cases. Every test
case begins with a line that contains a single integer n < 500,000-- the
length of the input sequence. Each of the the following n lines
contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input
sequence element. Input is terminated by a sequence of length n = 0.
This sequence must not be processed.
For every input sequence, your program prints a single line containing
an integer number op, the minimum number of swap operations
necessary to sort the given input sequence.

Made By kevinx6000 91

Example 2

Sample Input
5
9
1
0
5
4
3
1
2
3
0
Output for Sample Input
6
0

Made By kevinx6000 92

STL - sort

• #include<algorithm> // C++

• sort(ary, ary + n);

– Ascending order

• sort(ary, ary + n, cmp);

– Comparison Function ‘cmp’

Example (builtin type)
int main() {
int n, N[10010];
while (scanf(“%d”, &n) != EOF) {
int x;
for (int i = 0; i < n; ++i) {
scanf(“%d”, &x);
N[i] = x;

}
sort(N, N + n);

}
return 0;

}

Customized Data Type

Function prototype for operator <:

bool operator< (const type_name &p) const;

return value means

TRUE this < p

FALSE this >= p

Example (custom type)
struct T {
int x, y;
bool operator< (const T &p) const {

return x == p.x ? x < p.x : y < p.y;
}

};
T pt[10010];
int main() {

int n;
while (scanf(“%d”, &n) != EOF) {

int x, y;
for (int i = 0; i < n; ++i) {

scanf(“%d %d”, &x, &y);
pt[i].x = x, pt[i].y = y;

}
sort(pt, pt + n);

}
return 0;

}

y < p.y : x < p.x;

pt[10010];

struct

 T &p)

const

{

Customized Data Type

Function prototyp:

bool function_name (type_name p1, type_name p2);

return value means

TRUE p1 < p2

FALSE p1 >= p2

Example (descending)
bool descending(int p1, int p2) {
return p1 >= p2;

}

int main() {
int n, N[10010];
while (scanf(“%d”, &n) != EOF) {
int x;
for (int i = 0; i < n; ++i) {
scanf(“%d”, &x);
N[i] = x;

}
sort(N, N + n, descending);

}
return 0;

}

Made By kevinx6000 94

Example 3

POJ 3664 - Election Time
The cows are having their first election after overthrowing the tyrannical
Farmer John, and Bessie is one of N cows (1 ≤ N ≤ 50,000) running for
President. Before the election actually happens, however, Bessie wants to
determine who has the best chance of winning.

The election consists of two rounds. In the first round, the K cows (1
≤ K ≤ N) cows with the most votes advance to the second round. In the
second round, the cow with the most votes becomes President.

Given that cow i expects to get Ai votes (1 ≤ Ai ≤ 1,000,000,000) in the first
round and Bi votes (1 ≤ Bi ≤ 1,000,000,000) in the second round (if he or
she makes it), determine which cow is expected to win the election.
Happily for you, no vote count appears twice in the Ai list; likewise, no
vote count appears twice in the Bi list.

Made By kevinx6000 95

Example 3

Input
* Line 1: Two space-separated integers: N and K
* Lines 2..N+1: Line i+1 contains two space-separated
integers:Ai and Bi

Output
* Line 1: The index of the cow that is expected to win the election.

Sample Input
5 3
3 10
9 2
5 6
8 4
6 5

Sample Output
5

���&��������
&����
&����� NCKU CSIE Programming Contest Training Course

Thank	you	for	your	listening!

2

���&��������
&����
&����� NCKU CSIE Programming Contest Training Course

Practice

• Uva (6)
- 10327, 10810, 10107, 10026, 10420

• POJ (11)
- 3664, 3067, 3262, 1002, 1007, 2231, 2371,

2388, 1318, 1971, 3663

3

