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Time Complexity
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Time Complexity

• How to evaluate the execution time?
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Time Complexity

• Technical Analysis!!
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Time Complexity

• k nested loops with n iterations each:

– O(nk)
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Time Complexity

• k nested loops with n iterations each:

– O(nk)

• b recursive calls per level with maximum L levels:

– O(bL)
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Time Complexity

• k nested loops with n iterations each:

– O(nk)

• b recursive calls per level with maximum L levels:

– O(bL)

• Process 2D n*m matrix with k op. each cell:

– O(n x m x k)
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Time Complexity

• Examples

• for(i=0;i<n;i++)
if(…..) ….

• O(n)
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Time Complexity

• Examples

• for(i=0;i<n;i++)
for(j=0;j<n;j++)

if(…..) ….

• O(n2)
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Time Complexity

• Examples

• int two(int n){
if(n<2) return 1<<n;
return two(n-1)+two(n-1);

}
/* maximum n=M */

• O(2M)
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Time Complexity

• Given Input Size n = 1,000:

– O(n) = 

– O(n2) = 

– O(nlgn) = 

• Given Input Size n = 1,000,000:

– O(n) = 

– O(n2) = 

– O(nlgn) = 



Made By kevinx6000 30

Time Complexity

• Given Input Size n = 1,000:

– O(n) = O(1,000) OK
– O(n2) = O(1,000,000) OK
– O(nlgn) ≒ O(9965) OK

• Given Input Size n = 1,000,000:

– O(n) = O(1,000,000) OK
– O(n2) = O(1,000,000,000,000) Not good. Why…?

– O(nlgn) ≒ O(9,965,784) OK



Made By kevinx6000 31

Time Complexity

n Worst AC Algorithm

≦[10..11] O(n!), O(n6)

≦[15..18] O(2n x n2)

≦[18..22] O(2n x n)

≦100 O(n4)

≦400 O(n3)

≦2K O(n2log2n)

≦10K O(n2)

≦1M O(nlog2n)

≦100M O(n), O(log2n), O(1)

*A typical year 2013 
CPU can process 
100M operations in 
few seconds.

*Referenced from 
Competitive 
Programming, 3ed.
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Time Complexity

• But!!

• The actual running time depends on your actual 
number of operations and CPU power.

• For safety: 106 - 107 => ≦ 3 seconds

– Modern computers
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Sorting
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What is sorting?

• Order the sequence by some rules

• Ex: ascending order

– 6 5 1 4 3 2

– 1 2 3 4 5 6
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Bubble Sort

• Original

6 5 1 4 3 2
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Bubble Sort

• Swap

5 6 1 4 3 2
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Bubble Sort

• Swap

5 1 6 4 3 2
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Bubble Sort

• Swap

5 1 4 6 3 2
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Bubble Sort

• Swap

5 1 4 3 6 2
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Bubble Sort

• Swap

5 1 4 3 2 6
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Bubble Sort

• End of First Iteration

5 1 4 3 2 6
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Bubble Sort

• Swap

1 5 4 3 2 6
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Bubble Sort

• Swap

1 4 5 3 2 6
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Bubble Sort

• Swap

1 4 3 5 2 6
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Bubble Sort

• Swap

1 4 3 2 5 6
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Bubble Sort

• End of Second Iteration

1 4 3 2 5 6
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Bubble Sort

• And so on….

1 4 3 2 5 6

1 3 2 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Done.
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Bubble Sort

• Code

// Bubble Sort
for(i=n-1;i>0;i--){

for(j=0;j<i;j++){
if(ary[j]>ary[j+1]){

tmp=ary[j];
ary[j]=ary[j+1];
ary[j+1]=tmp;

}
}

}
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Insertion Sort

• Original

6 5 1 4 3 2
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Insertion Sort

• Choose one to insert

6 5 1 4 3 2
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Insertion Sort

• If value larger than chosen, then shift

6 1 4 3 2

5
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Insertion Sort

• Insert

5 6 1 4 3 2
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Insertion Sort

• Choose one to insert

5 6 1 4 3 2
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Insertion Sort

• Shift

5 6 4 3 2

1
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Insertion Sort

• Shift

5 6 4 3 2

1
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Insertion Sort

• Insert

1 5 6 4 3 2
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Insertion Sort

• Choose one to insert

1 5 6 4 3 2
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Insertion Sort

• Shift

1 5 6 3 2

4
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Insertion Sort

• Shift

1 5 6 3 2

4
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Insertion Sort

• Insert

1 4 5 6 3 2
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Insertion Sort

• And so on…

1 4 5 6 3 2

1 3 4 5 6 2

1 2 3 4 5 6

Done.
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Insertion Sort

• Code

// Insertion Sort
for(i=1;i<n;i++){
tmp=ary[i];
for(j=i-1;j>=0;j--){
if(ary[j]>tmp) ary[j+1]=ary[j];
else break;

}
ary[j+1]=tmp;

}
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Example 1

UVa 10327 - Flip Sort

Sorting in computer science is an important part. Almost every problem 

can be solved effeciently if sorted data are found. There are some 
excellent sorting algorithm which has already acheived the lower bound 
nlgn. In this problem we will also discuss about a new sorting approach. In 
this approach only one operation ( Flip ) is available and that is you can 
exchange two adjacent terms. If you think a while, you will see that it is 
always possible to sort a set of numbers in this way.

A set of integers will be given. Now using the above approach we want to 
sort the numbers in ascending order. You have to find out the minimum 
number of flips required. Such as to sort "1 2 3" we need no flip operation 
whether to sort "2 3 1" we need at least 2 flip operations.
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Example 1

The Input
The input will start with a positive integer N ( N<=1000 ). In 
next few lines there will be N integers. Input will be 
terminated by EOF.

The Output
For each data set print "Minimum exchange operations : M" 
where M is the minimum flip operations required to perform 
sorting. Use a seperate line for each case.

Sample Input
3 1 2 3
3 2 3 1 

Sample Output
Minimum exchange operations : 0
Minimum exchange operations : 2
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逆序數

• 逆序對
– ary[i] > ary[j] for some i < j

• 逆序數
– Sequence中所有逆序對的個數
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Merge Sort

• Divide & Conquer

• O(nlgn)
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Merge Sort

5 1 3 4 2
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Merge Sort

5 1 3 4 2

5 1 3 4 2
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Merge Sort

5 1 3 4 2

5 1 3 4 2

5 1 3
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Merge Sort

5 1 3 4 2

5 1 3 4 2

5 1 3

5 1



Made By kevinx6000 71

Merge Sort

5 1 3 4 2

5 1 3 4 2

1 3

5 1
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Merge Sort

5 1 3 4 2

5 1 3 4 2

1 5 3

5
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Merge Sort

5 1 3 4 2

4 2

1 5 3
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Merge Sort

5 1 3 4 2

1 4 2

1 5 3
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Merge Sort

5 1 3 4 2

1 3 4 2

5 3
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Merge Sort

5 1 3 4 2

1 3 5 4 2

5
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Merge Sort

5 1 3 4 2

1 3 5 4 2
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Merge Sort

5 1 3 4 2

1 3 5 4 2

4 2
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Merge Sort

5 1 3 4 2

1 3 5

4 2



Made By kevinx6000 80

Merge Sort

5 1 3 4 2

1 3 5 2

4 2
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Merge Sort

5 1 3 4 2

1 3 5 2 4

4
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Merge Sort

1 3 5 2 4
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Merge Sort

1

1 3 5 2 4
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Merge Sort

1 2

3 5 2 4
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Merge Sort

1 2 3

3 5 4
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Merge Sort

1 2 3 4

5 4
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Merge Sort

1 2 3 4 5

5
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Merge Sort

1 2 3 4 5

Done!!
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Example 2

UVa 10810 - Ultra-QuickSort
In this problem, you have to analyze a particular sorting algorithm. 
The algorithm processes a sequence of ndistinct integers by swapping 
two adjacent sequence elements until the sequence is sorted in 
ascending order. For the input sequence9 1 0 5 4 ,Ultra-QuickSort 
produces the output0 1 4 5 9 .Your task is to determine how many 
swap operations Ultra-QuickSort needs to perform in order to sort a 
given input sequence.The input contains several test cases. Every test 
case begins with a line that contains a single integer n < 500,000-- the 
length of the input sequence. Each of the the following n lines 
contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input 
sequence element. Input is terminated by a sequence of length n = 0. 
This sequence must not be processed.
For every input sequence, your program prints a single line containing 
an integer number op, the minimum number of swap operations 
necessary to sort the given input sequence.
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Example 2

Sample Input
5
9
1
0
5
4
3
1
2
3
0
Output for Sample Input
6
0 
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STL - sort

• #include<algorithm> // C++

• sort(ary, ary + n);

– Ascending order

• sort(ary, ary + n, cmp);

– Comparison Function ‘cmp’



Example (builtin type)
int main() {
int n, N[ 10010 ];
while ( scanf( “%d”, &n ) != EOF ) {
int x;
for ( int i = 0; i < n; ++i ) {
scanf( “%d”, &x );
N[ i ] = x;

}
sort( N, N + n );

}
return 0;

}



Customized Data Type

Function prototype for operator <:

bool operator< ( const type_name &p ) const;

return value means

TRUE this < p

FALSE this >= p



Example (custom type)
struct T {
int x, y;
bool operator< ( const T &p ) const {

return x == p.x ? x < p.x : y < p.y;
}

};
T pt[ 10010 ];
int main() {

int n;
while ( scanf( “%d”, &n ) != EOF ) {

int x, y;
for ( int i = 0; i < n; ++i ) {

scanf( “%d %d”, &x, &y );
pt[ i ].x = x, pt[ i ].y = y;

}
sort( pt, pt + n );

}
return 0;

}

y < p.y : x < p.x;

             

pt[ 10010 ];

struct

 T &p )

const

{



Customized Data Type

Function prototyp:

bool function_name ( type_name p1, type_name p2 );

return value means

TRUE p1 < p2

FALSE p1 >= p2



Example (descending)
bool descending( int p1, int p2 ) {
return p1 >= p2;

}

int main() {
int n, N[ 10010 ];
while ( scanf( “%d”, &n ) != EOF ) {
int x;
for ( int i = 0; i < n; ++i ) {
scanf( “%d”, &x );
N[ i ] = x;

}
sort( N, N + n, descending );

}
return 0;

}
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Example 3

POJ 3664 - Election Time
The cows are having their first election after overthrowing the tyrannical 
Farmer John, and Bessie is one of N cows (1 ≤ N ≤ 50,000) running for 
President. Before the election actually happens, however, Bessie wants to 
determine who has the best chance of winning.

The election consists of two rounds. In the first round, the K cows (1 
≤ K ≤ N) cows with the most votes advance to the second round. In the 
second round, the cow with the most votes becomes President.

Given that cow i expects to get Ai votes (1 ≤ Ai ≤ 1,000,000,000) in the first 
round and Bi votes (1 ≤ Bi ≤ 1,000,000,000) in the second round (if he or 
she makes it), determine which cow is expected to win the election. 
Happily for you, no vote count appears twice in the Ai list; likewise, no 
vote count appears twice in the Bi list.
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Example 3

Input
* Line 1: Two space-separated integers: N and K
* Lines 2..N+1: Line i+1 contains two space-separated 
integers:Ai and Bi

Output
* Line 1: The index of the cow that is expected to win the election.

Sample Input
5 3
3 10
9 2
5 6
8 4
6 5 

Sample Output
5 
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Thank	you	for	your	listening!

2
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Practice

• Uva (6)
- 10327, 10810, 10107, 10026, 10420

• POJ (11)
- 3664, 3067, 3262, 1002, 1007, 2231, 2371, 

2388, 1318, 1971, 3663

3


