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Time Complexity e

e How to evaluate the execution time?

Crmn v n

12350938 106580 1840 Time Limit Exceeded
12350931 hncul10610230 3903 Time Limit Exceeded
12350906 20112685 3233 Time Limit Exceeded
12350904 20112685 3233 Time Limit Exceeded
12350899 hncu793116483 1833 Time Limit Exceeded
12350889 xk2741 3016 Time Limit Exceeded
12350859 superstarzhu 3461 Time Limit Exceeded
12350840 davidleel999WTK 1251 Time Limit Exceeded
12350835 altair21 1811 Time Limit Exceeded
12350797 altair21 1811 Time Limit Exceeded
12350786 hncu793116483 1833 Time Limit Exceeded
12350773 block3 3993 Time Limit Exceeded
12350770 clbq2012 1273 Time Limit Exceeded
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Time Complexity s

e Technical Analysis!!
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Time Complexity

* k nested loops with n iterations each:
— 0O(n¥)
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Time Complexity

* k nested loops with n iterations each:
— 0O(n¥)

* brecursive calls per level with maximum L levels:
— O(bL)
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Time Complexity

* k nested loops with n iterations each:
— 0O(n¥)

* brecursive calls per level with maximum L levels:
— O(bL)

* Process 2D n*m matrix with k op. each cell:
— O(nx mx k)
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 Examples

e for(i=0;i<n;i++)

i£(.....) ..

 O(n)
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Time Complexity

 Examples

e for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(.....) ....

* O(n?)
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Time Complexity

n
mmmmmmmmmmm

e Examples

* inttwo(int n){
if(n<2) return 1<<n;
return two(n-1)+two(n-1);

}

/* maximum n=M */

. O(2M)

Made By kevinx6000




Time Complexity

* Given Input Size n = 1,000:
— O(n) =
— O(n?) =
— O(nlgn) =

* Given Input Size n =1,000,000:
— 0(n) =
— O(n?) =
— O(nlgn) =
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Time Complexity

* Given Input Size n = 1,000:
— 0O(n) = O(1,000) OK
— 0O(n?) = 0(1,000,000) OK
— O(nlgn) = 0(9965) OK

* Given Input Size n =1,000,000:
— O(n) = 0(1,000,000) OK
— 0(n?) = 0(1,000,000,000,000) Not good. Why...?
— O(nlgn) = 0(9,965,784) OK

Made By kevinx6000




Time Complexity R
n Worst AC Algorithm *Atypical year 2013
CPU can process
< 6
=[10.. 11] 0(!), 0(n%) 100M operations in
=[15..18] 0(2" x n?) few seconds.
=[18..22] 0(2" x n)
*Referenced from
< 4
=100 0(n?) Competitive
=400 0(n3) Programming, 3ed.
<2K 0(n%log,n)
<10K 0(n?)
<IM 0(nlog,n)
=100M 0(n), 0(log,n), 0(1)
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Time Complexity

e But!!

 The actual running time depends on your actual
number of operations and CPU power.

* Forsafety: 10°-107 => < 3 seconds

— Modern computers
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Sorting
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What is sorting?

* Order the sequence by some rules

* Ex: ascending order
—651432
—123456
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* Original

Bubble Sort
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1
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* Swap

Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort

* Swap

LT
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Bubble Sort

* Swap

[T
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 End of First Iteration

Bubble Sort

S
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* Swap

Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort

* Swap

[T
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* End of Second Iteration

Bubble Sort
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Bubble Sort
* And so on....
114|3[2|5]|6
113[2|4|5]|6 112]3|4 6
1023|456 Done.
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Bubble Sort

e Code

// Bubble Sort
for (i=n-1;1i>0;1--) {
for (3=0;3<i;J++) {
if(ary[j]>ary[Jj+1]) {
tmp=aryI[j];
ary[jl=ary[J+1];
ary[J+1l]=tmp;
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* Original

Insertion Sort
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* Choose one to insert

Insertion Sort
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Insertion Sort

 |f value larger than chosen, then shift
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* |nsert

Insertion Sort

S

6
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* Choose one to insert

Insertion Sort
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* Shift

Insertion Sort
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* Shift

Insertion Sort
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* |nsert

Insertion Sort

1
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* Choose one to insert

Insertion Sort

1
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* Shift

Insertion Sort
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* Shift

Insertion Sort
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* |nsert

Insertion Sort

1

4
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e And so on...

Insertion Sort

1ﬂ4 516 |32

1ﬂ3 4 | 516 | 2

112|134 |5 |6
Done.

Made By kevinx6000




Insertion Sort

e Code

// Insertion Sort
for(i=1;i<n;i++) {
tmp=aryl[1i];
for (j=1i-1;3>=0;3--) {
if(ary[j]>tmp) ary[jt+tl]l=ary([]];
else break;
}
ary[J+1l]=tmp;
}
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UVa 10327 - Flip Sort

Sorting in computer science is an important part. Almost every problem
can be solved effeciently if sorted data are found. There are some
excellent sorting algorithm which has already acheived the lower bound
nlgn. In this problem we will also discuss about a new sorting approach.In
this approach only one operation ( Flip ) is available and that is you can
exchange two adjacent terms. If you think a while, you will see that it is
always possible to sort a set of numbers in this way.

A set of integers will be given. Now using the above approach we want to
sort the numbersin ascending order. You have to find out the minimum

number of flips required. Such as to sort "1 2 3" we need no flip operation
whetherto sort "2 3 1" we need at least 2 flip operations.
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The Input

The input will start with a positive integer N ( N<=1000 ). In
next few lines there will be N integers. Input will be
terminated by EOF.

The Output

For each data set print "Minimum exchange operations : M"
where M is the minimum flip operations required to perform
sorting. Use a seperate line for each case.

Sample Input
3123
3231
Sample Output
Minimum exchange operations : O
Minimum exchange operations : 2
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— ary[i] > ary[j] for some i< j

« WFE

— Sequenceb

SSE=F

7 2 AU {E 24
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Merge Sort

* Divide & Conquer

* O(nlgn)
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Merge Sort
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Merge Sort
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Merge Sort
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Merge Sort
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Merge Sort

3

4

~

™

N

Made By kevinx6000




Merge Sort
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Merge Sort
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Merge Sort

Made By kevinx6000




=
Merge Sort somei
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=
Merge Sort somei

11213
> 4
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Merge Sort
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=
Merge Sort somei

Done!!
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UVa 10810 - Ultra-QuickSort

In this problem, you have to analyze a particular sorting algorithm.
The algorithm processes a sequence of ndistinct integers by swapping
two adjacent sequence elements until the sequence is sorted in
ascending order. For the input sequence9 1 05 4 ,Ultra-QuickSort
produces the outputO 14 5 9 Your task is to determine how many
swap operations Ultra-QuickSort needs to perform in order to sort a
given input sequence.The input contains several test cases. Every test
case begins with a line that contains a single integer n < 500,000-- the
length of the input sequence. Each of the the following n lines
contains a single integer 0 < afi] £ 999,999,999, the i-th input
sequence element. Input is terminated by a sequence of length n = 0.
This sequence must not be processed.

For every input sequence, your program prints a single line containing
an integer number op, the minimum number of swap operations

necessary to sort the given input sequence. T

%
e &
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IEFL | Soneor

Sample Input

O W INPEFP WPk UIORKF OWU

Output for Sample Input
6
0
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STL - sort

* #include<algorithm> // C++

e sort(ary, ary + n);
— Ascending order

e sort(ary, ary + n, cmp);

— Comparison Function ‘cmp’
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Example (builtin type)

1nt main() {
n, N[ 13
( scanf( , &n ) 1= ) {
1t X
(1int 1 =0; 1 <n; ++1 ) {
scanf( , & )3
N[ 1 ] = x;
¥
sortC N, N + n );

b




Customized Data Type

Function prototype for operator <:

< ( type_name &p )

return value means

TRUE this<p

FALSE this >= p




Example (custom type)

struct T {
1T X, Y,
< ( const struct T &p ) const {
X ==p.X?y <p.y . : X<p.X;
¥
Fpt[ 10010 ];

1t main() {
1nt n;
( scanf( , &n ) I= ) 1
LNt Xy, Y,
(Cint 1 =0; 1 <n; ++1 ) {
scanf( , &%, &y );
ptl i J1.x = x, ptL i 1.y = y;
}
sort( pt, pt + n );

)



y < p.y : x < p.x;

             

pt[ 10010 ];

struct

 T &p )

const

{


Customized Data Type

Function prototyp:

function_name ( type_name pl, type_name pZ2 );

return value means

TRUE pP1 < p2

FALSE p1 >=p2




Example (descending)

bool descending( int pl, 1int
pl >= pZ;
¥

int main() {
int n, N[ 1;
( scanf( , &n ) =

, Nt

= X
(int 1 =0; 1 <n; ++1 ) {
scanf( , & );
N[ 1 ] = x;

¥

sort( N, N + n, descending );

¥

)
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POJ 3664 - Election Time

The cows are having their first election after overthrowing the tyrannical
Farmer John, and Bessie is one of N cows (1 £ N £50,000) running for

President. Before the election actually happens, however, Bessie wants to
determine who has the best chance of winning.

The election consists of two rounds. In the first round, the K cows (1
<K £ N) cows with the most votes advance to the second round. In the
second round, the cow with the most votes becomes President.

Giventhat cow i expects to get Ai votes (1 < Ai <1,000,000,000) in the first
round and Bi votes (1 < Bi £1,000,000,000) in the second round (if he or
she makes it), determine which cow is expected to win the election.

Happily for you, no vote count appears twice in the Aj list; likewise, no
vote count appears twice in the Bj list.
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Input

* Line 1: Two space-separated integers: N and K
* Lines 2..N+1: Line i+1 contains two space-separated
integers: Ai and Bi

Output
* Line 1: The index of the cow that is expected to win the election.
Sample Input
53
310
92
56
84
65
Sample Output
5
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Thank you for your listening!

NCKU CSIE Programming Contest Training Course
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* Uva (6)
- 10327, 10810, 10107, 10026, 10420

. POJ (11)

- 3664, 3067, 3262, 1002, 1007, 2231, 2371,
2388, 1318, 1971, 3663
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