NCKU Programming Contest Training Course
Time Complexity & Sorting
2017/02/16

Jingfei Yang
e84016184@mail.ncku.edu.tw
http://myweb.ncku.edu.tw/~e84016184/sorting.pdf

Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

T

NCKU CSIE Programming Contest Training Course made by Jingfei & kevinx6000

=

rnational Collegi
acm g‘r':gmmnl:lflg Con?e:r

Time Complexity

Made By kevinx6000

%
-

Time Complexity e

e How to evaluate the execution time?

Crmn v n

12350938 106580 1840 Time Limit Exceeded
12350931 hncul10610230 3903 Time Limit Exceeded
12350906 20112685 3233 Time Limit Exceeded
12350904 20112685 3233 Time Limit Exceeded
12350899 hncu793116483 1833 Time Limit Exceeded
12350889 xk2741 3016 Time Limit Exceeded
12350859 superstarzhu 3461 Time Limit Exceeded
12350840 davidleel999WTK 1251 Time Limit Exceeded
12350835 altair21 1811 Time Limit Exceeded
12350797 altair21 1811 Time Limit Exceeded
12350786 hncu793116483 1833 Time Limit Exceeded
12350773 block3 3993 Time Limit Exceeded
12350770 clbq2012 1273 Time Limit Exceeded

Made By kevinx6000

Time Complexity s

e Technical Analysis!!

Made By kevinx6000

Time Complexity

* k nested loops with n iterations each:
— 0O(n¥)

Made By kevinx6000

Time Complexity

* k nested loops with n iterations each:
— 0O(n¥)

* brecursive calls per level with maximum L levels:
— O(bL)

Made By kevinx6000

Time Complexity

* k nested loops with n iterations each:
— 0O(n¥)

* brecursive calls per level with maximum L levels:
— O(bL)

* Process 2D n*m matrix with k op. each cell:
— O(nx mx k)

Made By kevinx6000

_—
Time Complexity s

 Examples

e for(i=0;i<n;i++)

i£(.....) ..

 O(n)

Made By kevinx6000

Time Complexity

 Examples

e for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(.....)

* O(n?)

Made By kevinx6000

Time Complexity

n
mmmmmmmmmmm

e Examples

* inttwo(int n){
if(n<2) return 1<<n;
return two(n-1)+two(n-1);

}

/* maximum n=M */

. O(2M)

Made By kevinx6000

Time Complexity

* Given Input Size n = 1,000:
— O(n) =
— O(n?) =
— O(nlgn) =

* Given Input Size n =1,000,000:
— 0(n) =
— O(n?) =
— O(nlgn) =

Made By kevinx6000

Time Complexity

* Given Input Size n = 1,000:
— 0O(n) = O(1,000) OK
— 0O(n?) = 0(1,000,000) OK
— O(nlgn) = 0(9965) OK

* Given Input Size n =1,000,000:
— O(n) = 0(1,000,000) OK
— 0(n?) = 0(1,000,000,000,000) Not good. Why...?
— O(nlgn) = 0(9,965,784) OK

Made By kevinx6000

Time Complexity R
n Worst AC Algorithm *Atypical year 2013
CPU can process
< 6
=[10.. 11] 0(!), 0(n%) 100M operations in
=[15..18] 0(2" x n?) few seconds.
=[18..22] 0(2" x n)
*Referenced from
< 4
=100 0(n?) Competitive
=400 0(n3) Programming, 3ed.
<2K 0(n%log,n)
<10K 0(n?)
<IM 0(nlog,n)
=100M 0(n), 0(log,n), 0(1)

Made By kevinx6000

Time Complexity

e But!!

 The actual running time depends on your actual
number of operations and CPU power.

* Forsafety: 10°-107 => < 3 seconds

— Modern computers

Made By kevinx6000

Sorting

Made By kevinx6000

What is sorting?

* Order the sequence by some rules

* Ex: ascending order
—651432
—123456

Made By kevinx6000

* Original

Bubble Sort

6

5

1

Made By kevinx6000

* Swap

Bubble Sort

Made By kevinx6000

Bubble Sort

Made By kevinx6000

Bubble Sort

Made By kevinx6000

Bubble Sort

* Swap

LT

Made By kevinx6000

Bubble Sort

* Swap

[T

Made By kevinx6000

 End of First Iteration

Bubble Sort

S

1

4

3

2

6

Made By kevinx6000

* Swap

Bubble Sort

Made By kevinx6000

Bubble Sort

Made By kevinx6000

Bubble Sort

Made By kevinx6000

Bubble Sort

* Swap

[T

Made By kevinx6000

* End of Second Iteration

Bubble Sort

1

4

3

2

3

6

Made By kevinx6000

Bubble Sort
* And so on....
114|3[2|5]|6
113[2|4|5]|6 112]3|4 6
1023|456 Done.

Made By kevinx6000

Bubble Sort

e Code

// Bubble Sort
for (i=n-1;1i>0;1--) {
for (3=0;3<i;J++) {
if(ary[j]>ary[Jj+1]) {
tmp=aryI[j];
ary[jl=ary[J+1];
ary[J+1l]=tmp;

Made By kevinx6000

* Original

Insertion Sort

6

5

1

Made By kevinx6000

* Choose one to insert

Insertion Sort

1

4

3

2

]

Made By kevinx6000

Insertion Sort

 |f value larger than chosen, then shift

6

1

4

3

2

\ g

Made By kevinx6000

* |nsert

Insertion Sort

S

6

Made By kevinx6000

* Choose one to insert

Insertion Sort

3

4

3

2

[

Made By kevinx6000

* Shift

Insertion Sort

Made By kevinx6000

* Shift

Insertion Sort

Made By kevinx6000

* |nsert

Insertion Sort

1

5

Made By kevinx6000

* Choose one to insert

Insertion Sort

1

5

3

2

{0

Made By kevinx6000

* Shift

Insertion Sort

Made By kevinx6000

* Shift

Insertion Sort

Made By kevinx6000

* |nsert

Insertion Sort

1

4

Made By kevinx6000

e And so on...

Insertion Sort

1ﬂ4 516 |32

1ﬂ3 4 | 516 | 2

112|134 |5 |6
Done.

Made By kevinx6000

Insertion Sort

e Code

// Insertion Sort
for(i=1;i<n;i++) {
tmp=aryl[1i];
for (j=1i-1;3>=0;3--) {
if(ary[j]>tmp) ary[jt+tl]l=ary([]];
else break;
}
ary[J+1l]=tmp;
}

Made By kevinx6000

=
Exa m p I e 1 acmm”r::m%m

UVa 10327 - Flip Sort

Sorting in computer science is an important part. Almost every problem
can be solved effeciently if sorted data are found. There are some
excellent sorting algorithm which has already acheived the lower bound
nlgn. In this problem we will also discuss about a new sorting approach.In
this approach only one operation (Flip) is available and that is you can
exchange two adjacent terms. If you think a while, you will see that it is
always possible to sort a set of numbers in this way.

A set of integers will be given. Now using the above approach we want to
sort the numbersin ascending order. You have to find out the minimum

number of flips required. Such as to sort "1 2 3" we need no flip operation
whetherto sort "2 3 1" we need at least 2 flip operations.

Made By kevinx6000

Exam P lel e
TS event

The Input

The input will start with a positive integer N (N<=1000). In
next few lines there will be N integers. Input will be
terminated by EOF.

The Output

For each data set print "Minimum exchange operations : M"
where M is the minimum flip operations required to perform
sorting. Use a seperate line for each case.

Sample Input
3123
3231
Sample Output
Minimum exchange operations : O
Minimum exchange operations : 2

Made By kevinx6000

— ary[i] > ary[j] for some i< j

« WFE

— Sequenceb

SSE=F

7 2 AU {E 24

Made By kevinx6000

Merge Sort

* Divide & Conquer

* O(nlgn)

Made By kevinx6000

Made By kevinx6000

Merge Sort

3

4

~

N

Made By kevinx6000

Merge Sort

3

4

~

g

3

N

Made By kevinx6000

Made By kevinx6000

Merge Sort

3

4

~

g

3

N

Made By kevinx6000

Merge Sort

3

4

~

g

3

N

Made By kevinx6000

Merge Sort

3

4

{/

N

Made By kevinx6000

Merge Sort

3

4

~

/"

N

Made By kevinx6000

Merge Sort

3

4

~

™

N

Made By kevinx6000

Merge Sort

3

4

7~
_~

N

Made By kevinx6000

Merge Sort

Made By kevinx6000

Made By kevinx6000

Made By kevinx6000

Made By kevinx6000

Made By kevinx6000

Merge Sort

Made By kevinx6000

=
Merge Sort somei

Made By kevinx6000

=
Merge Sort somei

Made By kevinx6000

=
Merge Sort somei

11213
> 4

Made By kevinx6000

Merge Sort

Made By kevinx6000

Made By kevinx6000

=
Merge Sort somei

Done!!

Made By kevinx6000

= »
Exal I |p | o 2 acm s

UVa 10810 - Ultra-QuickSort

In this problem, you have to analyze a particular sorting algorithm.
The algorithm processes a sequence of ndistinct integers by swapping
two adjacent sequence elements until the sequence is sorted in
ascending order. For the input sequence9 1 05 4 ,Ultra-QuickSort
produces the outputO 14 5 9 Your task is to determine how many
swap operations Ultra-QuickSort needs to perform in order to sort a
given input sequence.The input contains several test cases. Every test
case begins with a line that contains a single integer n < 500,000-- the
length of the input sequence. Each of the the following n lines
contains a single integer 0 < afi] £ 999,999,999, the i-th input
sequence element. Input is terminated by a sequence of length n = 0.
This sequence must not be processed.

For every input sequence, your program prints a single line containing
an integer number op, the minimum number of swap operations

necessary to sort the given input sequence. T

%
e &

Made By kevinx6000

Example 2 e
IEFL | Soneor

Sample Input

O W INPEFP WPk UIORKF OWU

Output for Sample Input
6
0

Made By kevinx6000

STL - sort

* #include<algorithm> // C++

e sort(ary, ary + n);
— Ascending order

e sort(ary, ary + n, cmp);

— Comparison Function ‘cmp’

Made By kevinx6000

Example (builtin type)

1nt main() {
n, N[13
(scanf(, &n) 1=) {
1t X
(1int 1 =0; 1 <n; ++1) {
scanf(, &)3
N[1] = x;
¥
sortC N, N + n);

b

Customized Data Type

Function prototype for operator <:

< (type_name &p)

return value means

TRUE this<p

FALSE this >= p

Example (custom type)

struct T {
1T X, Y,
< (const struct T &p) const {
X ==p.X?y <p.y . : X<p.X;
¥
Fpt[10010];

1t main() {
1nt n;
(scanf(, &n) I=) 1
LNt Xy, Y,
(Cint 1 =0; 1 <n; ++1) {
scanf(, &%, &y);
ptl i J1.x = x, ptL i 1.y = y;
}
sort(pt, pt + n);

)

y < p.y : x < p.x;

pt[10010];

struct

 T &p)

const

{

Customized Data Type

Function prototyp:

function_name (type_name pl, type_name pZ2);

return value means

TRUE pP1 < p2

FALSE p1 >=p2

Example (descending)

bool descending(int pl, 1int
pl >= pZ;
¥

int main() {
int n, N[1;
(scanf(, &n) =

, Nt

= X
(int 1 =0; 1 <n; ++1) {
scanf(, &);
N[1] = x;

¥

sort(N, N + n, descending);

¥

)

DDOO
I ati I Collegi
Exam | e 3 i
=== event
ponsor

POJ 3664 - Election Time

The cows are having their first election after overthrowing the tyrannical
Farmer John, and Bessie is one of N cows (1 £ N £50,000) running for

President. Before the election actually happens, however, Bessie wants to
determine who has the best chance of winning.

The election consists of two rounds. In the first round, the K cows (1
<K £ N) cows with the most votes advance to the second round. In the
second round, the cow with the most votes becomes President.

Giventhat cow i expects to get Ai votes (1 < Ai <1,000,000,000) in the first
round and Bi votes (1 < Bi £1,000,000,000) in the second round (if he or
she makes it), determine which cow is expected to win the election.

Happily for you, no vote count appears twice in the Aj list; likewise, no
vote count appears twice in the Bj list.

Made By kevinx6000

E X a I 3 acm Esnmmns st
I I I p e T=EF event
= sponsor

Input

* Line 1: Two space-separated integers: N and K
* Lines 2..N+1: Line i+1 contains two space-separated
integers: Ai and Bi

Output
* Line 1: The index of the cow that is expected to win the election.
Sample Input
53
310
92
56
84
65
Sample Output
5

Made By kevinx6000

ACIM Eegiinming Contost

(1l

Thank you for your listening!

NCKU CSIE Programming Contest Training Course

&

made by Jingfei & kevinx6000

P t 1 acm
r a C I C e T=E5 event
sponsor

* Uva (6)
- 10327, 10810, 10107, 10026, 10420

. POJ (11)

- 3664, 3067, 3262, 1002, 1007, 2231, 2371,
2388, 1318, 1971, 3663

&

NCKU CSIE Programming Contest Training Course made by Jingfei & kevinx6000 .%.
& &
&

