

Competitive Algorithm Design and Practice Maximum Flow 2014/04/09

Shang Lun, Chan (Iouis7340)

louisjs90@gmail.com

Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan

Flow

Flow

Capacity

pipe

Capacity

 $C(u,v) \ge F(u,v)$

Flow Network

Flow Network

Definition:

A graph used to describe the flow.

Flow Network

- Information:
 - capacity
 - flow
- express:

flow / capacity

Flow network

- pipe : edge (directional or bidirectional)
- capacity of pipe : weight of edge
- pipe joint : vertex (talk about it later)

Flow network

IBM.

S-T Flow

- Two vertice:
 - source (S)
 - sink (T)

- Two vertice:
 - source (S)
 - sink **(T)**

enter from source and leave from sink.

S-T Flow example

acm International Collegiate Programming Contest event sponsor

S-T Flow example

S-T Flow example

Flow conservation

Flow conservation

Flow leave from source = Flow enter into sink

Flow conservation

Flow enter into one node = Flow leave from one node

Residual Network

Definition:

a graph used to describe the remaining capacity of all edges.

Residual Network

Residual Network

Augmenting Path

Definition:

A path form source to sink in residual network that all capacity of edges are greater than zero.

Augmenting Path

Augmenting Path

Still capable of a flow with 5

Maximum Flow

acm International Collegiate Programming Contest

Maximum Flow

acm International Collegiate Programming Contest

Find augmenting path

acm International Collegiate Programming Contest event sponsor

Find bottleneck

Flow pass

acm International Collegiate Programming Contest

Find augmenting path

acm International Collegiate Programming Contest

Find augmenting path

Find bottleneck

Flow pass

acm International Collegiate Programming Contest

Find augmenting path

acm International Collegiate Programming Contest

Find augmenting path

Competitive Algorithm Design and Practice

acm International Collegiate Programming Contest event sponsor

Find bottleneck

Competitive Algorithm Design and Practice

acm International Collegiate Programming Contest event sponsor

Flow pass

acm International Collegiate Programming Contest

Find augmenting path

acm International Collegiate Programming Contest

Find augmenting path

Maximum Flow

Just DFS?

Maximum flow = 1????

Maximum flow = 2!!!

Maximum flow = 1????

Maximum flow = 2 !!!

Maximum flow = 2 !!!

Ford-Fulkerson

- 1. Find an augmenting path from source to sink
- 2. Find the bottleneck on augmenting path
- **3.** Let the flow pass
- 4. Repeat step 1 to step 3 until no augmenting path found

Source Code

```
int FordFulkerson(int n)
{
   int i,j,k;
   int ret=0;

   while(1)
   {
      memset(v,0,sizeof(v));
      if(!DFS(1,n,n)) break;
      ret+=FindFlow(1,n,n);
   }
   return ret;
}
```


Source Code

```
bool DFS(int cur,int t,int n)
    int i,j,k;
    v[cur]=1;
    if(cur==t) return true;
    for(i=1;i<=n;i++)</pre>
        if(v[i]) continue;
        if(cap[cur][i]-flow[cur][i]>0 || flow[i][cur]>0)
            pa[i]=cur;
            if(DFS(i,t,n)) return true;
    return false;
```


Source Code

```
int FindFlow(int s,int t,int n)
    int i,j,k,pre;
    int f=INF;
    for(i=t;i!=s;i=pa[i])
        pre=pa[i];
        if(cap[pre][i]-flow[pre][i]>0)
            f=min(f,cap[pre][i]-flow[pre][i]);
        else f=min(f,flow[i][pre]);
    for(i=t;i!=s;i=pa[i])
        pre=pa[i];
        if(cap[pre][i]-flow[pre][i]>0)
            flow[pre][i]+=f;
        else flow[i][pre]-=f;
    return f;
```


Maximum Flow

Time complexity: O(EF)

E: number of edges

F: value of maximum flow

Learn more ~

Multi-source & Multi sink

Multi-source & Multi sink

Capacity on node

Capacity on node

Practice

POJ -2455: Secret Milking Machine

Thank you for your attention!

