

Competitive Algorithm Design and Practice Bipartite Matching 2014/04/30

Guan Yu, Chen (kevinx6000)

kevinx6000@gmail.com

Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

Outline

- Pre-concept
 - Matching
 - Cardinality vs Weighted
 - Bipartite Graph
- Maximum Cardinality Bipartite Matching
 - Flow Modeling
 - Alternating Path
 - Augmenting Path Algorithm

- 匹配
- A set of edges in a graph without common vertices.

- 匹配
- A set of edges in a graph without common vertices.

Cardinality vs Weighted

Cardinality vs Weighted

• Cardinality: 個數

• Weighted: 權重

Cardinality vs Weighted

• Cardinality: 個數

• Weighted: 權重

- Maximum (Cardinality) Matching
 - 最大匹配數
- Maximum Weighted Matching
 - 最大總權重
- Maximum Weighted Maximum Cardinality Matching
 - 最大匹配數的前提下,最大總權重
- And so on...

Bipartite Graph

Bipartite Graph

- 二分圖
- 可以分成兩群,每群內彼此間沒有edge

Bipartite Graph

- 或者,一張圖上不存在odd (length) cycle
- 若給一張不存在odd cycle的圖,可用DFS/BFS標號將圖分成兩群

Maximum Cardinality Bipartite Matching

• 二分圖最大匹配(數)

Flow modeling

Flow modeling

Flow modeling

- Flow modeling
 - Edmonds-Karp: O(VE²)
 - Dinic: $O(V^2E)$

Faster algorithm...?

- Alternating Path (交錯路徑)
 - 匹配邊與未匹配邊交替出現的路徑

- Augmenting Path(增廣路徑)
 - 起點與終點都是未匹配點的alternating path

- 觀察:
 - 將augmenting path的匹配邊與未匹配邊對調, 匹配數量加1,且不影響匹配正確性

Algorithm:

- 1. 枚舉左邊這群的每個點,嘗試找尋augmenting path
- 2. 每次找到augmenting path,對調匹配與未匹配邊

Example

Example

找到augmenting path: 1-3

event sponsor

Example

對調,匹配數+1

Example

沒有augmenting path

Example

找到augmenting path: 3-4

event sponsor

Example

對調,匹配數+1

Example

找到augmenting path: 4-3-1-2

Example

對調,匹配數+1

Example

找到augmenting path: 5-4-3-1

Example

對調,匹配數+1

Example

找到augmenting path: 6-6

event sponsor

Example

對調,匹配數+1

Example

最大匹配數: 5 1-2
3-1
4-3
5-4
6-6

- 找augmenting path:
 - Backtracking?

- 找augmenting path:
 - Backtracking? NO!
 - DFS/BFS! Why?

- 找augmenting path:
 - Backtracking? NO!
 - DFS/BFS! Why?

對於右邊visit過的點,不需要重新visit

Code

```
int Bipartite(int nL, int nR)
47
         int i,ans=0;
48
49
         memset(llink,0,(nL+1)*sizeof(int));
50
51
         memset(rlink,0,(nR+1)*sizeof(int));
52
53
54
         for(i=1;i<=nL;++i)</pre>
55
57
             memset(used,false,(nR+1)*sizeof(bool));
             if(DFS(i)) ++ans;
59
         return ans;
```


Code

```
14
                     15
                          bool DFS(int now)
                     17
                              int i,next;
                     19
                              for(i=0;i<(int)edg[now].size();++i)</pre>
                     21
                     22
                                  next=edg[now][i];
                     23
                     25
                                  if(!used[next])
                                       used[next]=true;
                     29
                                       if(!rlink[next]||DFS(rlink[next]))
                     32
                     33
                                           llink[now]=next;
                                           rlink[next]=now;
                                           return true;
                              return false;
Competitive Algorith
```


Practice

- UVa 10080
 - 或POJ 2536

Thank you for your attention!

