NCKU Programming Contest Training Course Math 2018/03/14

Lin Yun Wen

Department of Computer Science and Information Engineering National Cheng Kung University

Tainan, Taiwan

Outline

Prime Numbers

Big Number

GCD, Extended Euclid's Algorithm

Prime Number

- Sieve of Eratosthenes（埃拉托斯特尼筛法）
- 由小到大選擇質數，並刪除其倍數
－ $6 n \pm 1$ Method
－拿 2 和 3 這兩個質數先篩過一遍，剩下的數字則用除法驗證是不是質數。

Prime Number

- We use sieve to create a prime array
- Chose the smallest number at each iteration and delete the multiple of this number

Chose 2

Prime Number

- We use sieve to create a prime array
- Chose the smallest number at each iteration and delete the multiple of this number

Chose 3
 \uparrow

Prime Number

- We use sieve to create a prime array
- Chose the smallest number at each iteration and delete the multiple of this number

Chose 5
 1

Prime Number

- We use sieve to create a prime array
- Chose the smallest number at each iteration and delete the multiple of this number

Chose 7
 I

Prime Number

- We use sieve to create a prime array
- Chose the smallest number at each iteration and delete the multiple of this number

Chose 11
 I

Prime Number

－Sieve of Eratosthenes（埃拉托斯特尼篩法）

－由小到大選擇質數，並删除其倍數

```
1 #include <cmath>
2 #include <cstring>
# #define MAX 10000000
4 bool is_prime[MAX];
5 void eratosthenes()
{
    memset(is_prime, 1, sizeof(is_prime));
    is_prime[0] = false;
    is_prime[1] = false;
        for (int i = 2; i <= sqrt(MAX); ++i)
        if (is_prime[i])
            for(int j = i+i; j < MAX; j += i)
                        is_prime[j] = false;
    }
```


Prime Number

－6n \pm I Method

- -2 和 3 的最小公倍數是 6 ，把所有數字分為 $6 n, ~ 6 n+1, ~ 6 n+2$ ，
- $6 n+3$ ， $6 n+4$ ， $6 n+5$ 六種，可以看出 $6 n$ ， $6 n+2$ ， $6 n+3$ ， $6 n+4$ 會是 2 或 3 的倍數，不屬於質數。因此，只要驗證 $6 n+1$ 和 $6 n+5(=6 n-I)$ 是不是質數就可以了。

Prime Number

- 6n \pm I Method

```
```

1 \#include <vector>

```
```

1 \#include <vector>
2 \#define MAX 10000000
2 \#define MAX 10000000
3 vector<int> prime;
3 vector<int> prime;
4 bool is_prime(int n) {
4 bool is_prime(int n) {

```
    for (int i = 0; prime[i]*prime[i] <= n; ++i)
```

 for (int i = 0; prime[i]*prime[i] <= n; ++i)
 if (n % prime[i] == 0)
 if (n % prime[i] == 0)
 return false;
 return false;
 return true;
 return true;
 }
}
void make_prime() {
void make_prime() {
prime.push_back(2);
prime.push_back(2);
prime.push_back(3);
prime.push_back(3);
for (int i = 5, gap = 2; i < MAX; i+=gap, gap = 6 - gap)
for (int i = 5, gap = 2; i < MAX; i+=gap, gap = 6 - gap)
if (is_prime(i))
if (is_prime(i))
prime.push_back(i);
prime.push_back(i);
}

```
}
```


Prime Number

－方法二比方法一慢，但較省空間
－But just remember that the code in previous page is fast enough to solve almost every prime problems

- 其他方法：
- 演算法筆記－Prime

Practice - 1

UVa 10392 - Factoring Large Numbers

made by kk \& rabbit125
made by ai281918 \& yun wen

Outline

Prime Numbers

Big Number

GCD, Extended Euclid's Algorithm

Big Number

－Array
－習慣上將低位數放在index比較小的位置
－Ex：68046897523I245

－右方補0
made by kk \＆rabbit125
made by ai281918 \＆yun wen

Big Number

- 加法：位數各自相加後，由低至高位依序進位
- 減法：位數各自相減後，由低至高位依序借位
- 乘法：直式乘法
- 除法：長除法

Big Number

- 加法:

```
1 void add(int a[100], int b[100], int c[100]) \{
\(2 \quad \cdots\) for (int \(\mathbf{i}=0\); \(\mathbf{i}<100\); ++i)
\(3 \quad \ldots . . . c[i]=a[i]+b[i] ;\)
    for (int \(\mathbf{i}=0 ; \mathbf{i}<100-1\); ++i) \(\{\)
        c[i+1] += c[i] / 10;
        c[i] \%= 10;
    \}
9 \}
```

made by kk \& rabbit125

Practice - 2

UVa 10106 - Product

Problem Description

The problem is to multiply two integers $X, Y .(0 \leq X, Y<10250)$

Input
The input will consist of a set of pairs of lines. Each line in pair contains one multiplyer.

Output

For each input pair of lines the output line should consist one integer the product.

Outline

Prime Numbers

Big Number

GCD, Extended Euclid's Algorithm

Greatest Common Divisor

－輾轉相除法（Euclidean Algorithm）

11	int gcd（int a，int b）\｛
12	if（a＝＝0）
13	\cdots return b；
14	return $\operatorname{gcd}(\mathrm{b} \% \mathrm{a}, \mathrm{a})$ ；
15	\}

made by kk \＆rabbit125
－ $\operatorname{gcd}(462,1071)$
$-\operatorname{gcd}(147,462)$
－ $\operatorname{gcd}(21,147)$
$-\operatorname{gcd}(0,7)$

－從1071中不斷減去462直到小於462（可以減2次，即商q0＝2），餘數是 147：
$-1071=2 \times 462+147$.
－然後從462中不斷減去147直到小於 147 （可以減 3 次，即 $11=3$ ），餘數是21：
$-462=3 \times 147+21$ ．
－再從147中不斷減去21直到小於21（可以減7次，即q2＝7），沒有餘數： $-147=7 \times 21+0$.
－此時，餘數是 0 ，所以 1071 和 462 的最大公因數是 21 ，

Practice - 3

UVa 408 - Uniform Generator

made by kk \& rabbit125
made by ai281918 \& yun wen

Extended Euclidean Algorithmeme

－找到 $a X+b Y=\operatorname{gcd}(a, b)$ 的整數解 X, Y
－Ex（from wiki）
$-47 x+30 y=1$

Extended Euclidean Algorithm ${ }^{c m=}$

- $47=30 * 1+17$
- $30=17 * 1+13$
- $17=13 * \mid+4$
- $13=4 * 3+1$
- $4=1 * 4+0$
$\operatorname{gcd}(30,47)$
$\operatorname{gcd}(17,30)$ $\operatorname{gcd}(13,17)$
$\operatorname{gcd}(4,13)$
$\operatorname{gcd}(1,4)$
$\operatorname{gcd}(0,1)$

Extended Euclidean Algorithm ${ }^{c m=}$

- $47=30 * \mid+17$
- $30=17 * 1+13$
- $I 7=13 * \mid+4$
- $13=4 * 3+1$
- $4=1 * 4+0$
- $17=47 * I+30 *(-I)$
- $13=30 * 1+17 *(-1)$
- $4=17 * 1+13 *(-1)$
- $I=I 3 * I+4 *(-3)$

$$
47 x+30 y=1
$$

Extended Euclidean Algorithm ${ }^{c m=}$

- $I=I 3 * I+4 *(-3)$
- $I=13 * I+[17 * I+13 *(-I)] *(-3)$
- $I=17 *(-3)+13 * 4$
- $I=17 *(-3)+[30 * I+17 *(-I)] * 4$
- $I=30 * 4+17 *(-7)$
- $\mathrm{I}=30 * 4+[47 * I+30 *(-I)] *(-7)$
- $I=47 *(-7)+30 * I I$

Extended Euclidean Algorithm ${ }_{\mathrm{mm}}^{\mathrm{cm}=}$

- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$
- $a X+b Y=\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)=b X^{\prime}+(a \% b) Y^{\prime}$
- $a X+b Y=b X^{\prime}+[a-(a / b) b] Y^{\prime}=a Y^{\prime}+b\left(X^{\prime}-(a / b) Y^{\prime}\right)$
$-X=Y$ '
$-Y=X^{\prime}-(a / b) Y^{\prime}$
made by kk \& rabbit125
made by ai281918 \& yun wen

Extended Euclidean Algorithmme

```
17 int exGCD(int a, int b, int &X, int &Y) {
18 ....if (b == 0) {
19
20
21
22
23
24
25
26
27
28
29
    }
}
```

made by kk \& rabbit125

Practice - 4

UVa IOIO4 - Euclid Problem

made by kk \& rabbit125
made by ai281918 \& yun wen

Extended Euclidean Algorithmeme

－$\frac{m!}{n!} \% \mathrm{P}(\mathrm{P}$ 是一個很大的質數 $)$
made by kk \＆rabbit125
made by ai281918 \＆yun wen

Extended Euclidean Algorithm

－$a X+b Y=\operatorname{gcd}(a, b)$
$-\mathrm{a}=\mathrm{n}$ ！
－b＝p
$-\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$

方程式 $a x+b y=1$ 有整數解
iff 整數 \mathbf{a} 和 b 互質
made by kk \＆rabbit125
made by ai281918 \＆yun wen

Extended Euclidean Algorithmimy

- n! $\mathrm{X}+\mathrm{pY}=\mathrm{I}$ (use Extended EuclideanAlgorithm get (X, Y))
- $n!X+p Y=I \rightarrow \bmod p$
- $(\mathrm{n}!\mathrm{X}) \% \mathrm{p}=1$--- (I)
- $\frac{m!}{n!} \% p=a n s--$ (2)
- $(1) *(2)$

$$
\rightarrow\left(\frac{m!}{n!} \times n!X\right) \% p=a n s \rightarrow(m!\times X) \% p=a n s
$$

made by kk \& rabbit125
made by ai281918 \& yun wen

Practice-5

Facebook Hacker Cup 2017 RoundI Beach Umbrellas

made by kk \& rabbit125
made by ai281918 \& yun wen

Epsilon ε

－Float ：

- 數值範圍：$-3.4 \mathrm{e}-38 \sim 3.4 \mathrm{e} 38$
- 十位數精確度位數：6～7
－Double ：
- 數值範圍：－1．7e308～1．7e308
- 十位數精確度位數：14～15

Epsilon ε

- Example

```
1 #include <cstdio>
2 #include <cmath>
3
4 int main() {
5 ...double a = asin(sqrt(2.0) / 2) * 4.0;
6 ... double b = acos(-1.0);
7
8 ....printf("a = %.20lf\n", a);
9 ...printf("b = %.20lf\n", b);
10 ...printf("a-b = %.20lf\n", a
11 ....printf("a == b? %s\n", a == b ? "True" : "False");
12 }
```


Epsilon ε

- Result

```
linyunwen@Lin-Yun-Wens-MacBook-Air ~/D/L/C/AGM> ./sample_epsilon
a=3.14159265358979356009
b = 3.14159265358979311600
a-b = 0.0000000000000000444409
a == b? False
```

made by kk \& rabbit125 made by ai281918 \& yun wen

Epsilon ε

－引入 eps 判斷浮點數是否相等
$-\mathrm{eps}=\mathrm{le}-8$

整數	浮點數
$a==b$	$\|a-b\|<e p s$
$a!=b$	$\|a-b\|>e p s$
$a<b$	$a-b<-e p s$
$a>b$	$a-b>e p s$

made by kk \＆rabbit125
made by ai281918 \＆yun wen

Practice-6

UVa 906 - Rational Neighbor

made by kk \& rabbit125
made by ai281918 \& yun wen

