@%

ACIM Frsgianming Contae”

am@]
Binary Search Tree & Binary [Heap
2014/02/26

Yi Long, Lu (mikel199250)
mike199250@gmail.com

http://myweb.ncku.edu.tw/~f74991073/2014 02 26 BST BH.zip
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

T

NCKU CSIE Programming Contest Training Course

Made By mike199250

outline

Binary tree

Binary search tree
Practice - P0OJ 3481
Heap

Binary heap

Practice - Uva 10954
Problems

Made By mike199250

Faaa
8
2e0®
gl

acm Lspmri

== event
= sponsor

Binary Tree

Made By mike199250

Binary Tree sz

« Each node has at most two children(left

child and right child).
o D
e (130 (s

(o) (D) (D
(D) O |
Not Binary tree

Binary tree

Made By mike199250

Full Binary Tree e

« Every node other than the leaves has two
children.

Full binary tree Not full binary tree

N 5

* 3

&

2

®,
Made By mike199250 e ®

=

Complete Binary Tree i

« Every level, except the last, 1s
completely filled, and all nodes are as
far left as possible.

16
(14 Cio) 2
G GG B SE
Complete binary tree e o

Not complete binary tree

Made By mike199250

Traversal

e Pre-order:
e Tn-order:
e Post-order:

16 14 8 25 10 3
8 14 25 16 3 10
8 25 14 3 10 16

Made By mike199250

[raversal i
= = nt

O 5
OROlE

In-order-Tree-walk(x)

1.

2.
3.
4

1f x 1s not NULL
then In-order-Tree-walk(left[x])
print key[x]
In-order-Tree-walk(right[x])

Made By mike199250

Binary Search Tree

Made By mike199250

Binary Search Tree som s

« The left sub-tree of a node contains only
nodes with keys less than the node s key.

Made By mike199250

@%

Binary Search Tree ome

== event
= Z=S°E spons

« The left sub-tree of a node contains only
nodes with keys less than the node s key.

« The right sub-tree of a node contains

only nodes with keys greater than the
node s key.

Made By mike199250

Binary Search Tree somiizs

« The left sub-tree of a node contains only
nodes with keys less than the node s key.

« The right sub-tree of a node contains

only nodes with keys greater than the
node s key.

« The left and right sub-tree are also
binary search tree.

Made By mike199250

Binary Search Tree scmeear

The left sub-tree of a node contains only
nodes with keys less than the node s key.

The right sub-tree of a node contains
only nodes with keys greater than the
node s key.

The left and right sub-tree are also
binary search tree.

There must be no duplicate nodes.

Made By mike199250

« Left key < node s key
« Right key > node s key

Made By mike199250

Binary Search Tree “‘““"‘"’

« Operations: Searching, Insertion,
Deletion can be performed in 0(/A) time,
where /1 1s the height of the tree.

Made By mike199250

Binary Search Tree ““"“"""’

Operations: Searching, Insertion,
Deletion can be performed in 0(/A) time,
where /1 1s the height of the tree.

worst case: /A=0(N)
Balanced BST: A=0(log N)

Made By mike199250

Binary Search Tree s

Operations: Searching, Insertion,
Deletion can be performed in 0(/A) time,
where /1 1s the height of the tree.

worst case: /A=0(N)
Balanced BST: A=0(log N)

How to guarantee /=0(log N)?

Made By mike199250

Binary Search Tree ey

Operations: Searching, Insertion,
Deletion can be performed in 0(/A) time,
where /1 1s the height of the tree.

worst case: /A=0(N)
Balanced BST: A=0(log N)

How to guarantee /=0(log N)?
— Self-balancing Binary Search Tree!
— AVL tree, Red-black tree, Treap, etc.

Made By mike199250

200
gl

S h - ACIM e et
earching
= = sponsor

Searching a binary search tree for a
specific key.

Can be a recursive or an

process. 0

Example: o 18

Searching 13

Searching 14 ° o ! ~
2o GO (D

Made By mike199250

Searching o
« Searching 13

Made By mike199250

Searching o

« Searching 13

« 13 = 15 7
— No

- 13 < 15 7
— Yes

Made By mike199250

Searching

« Searching 13

« 13 =067

— NO

- 13 < 6 7

— NO

« 13 > 6 7

— Yes

Made By mike199250

« Searching 13

e 13 =7 7
— No

e 13 < /7 7
— No

e 13 > /7 7
— Yes

Searching

Made By mike199250

« Searching 13

e 13 =13 ?
— Yes
e Find!

Searching

Made By mike199250

Searching o
+ Searching 14

Made By mike199250

Searching o

+ Searching 14

e 14 = 15 7
— No

« 14 < 15 7?
— Yes

Made By mike199250

Searching

« Searching 14

« 14 =06 7

— NO

e 14 < 6 7

— NO

- 14 > 6 7

— Yes

Made By mike199250

« Searching 14

e 14 =7 7
— No

e 14 < /7 7
— No

« 14 > 7 7
— Yes

Searching

Made By mike199250

Searchi ng acg*»»«";

Searching 14

14 = 13 7
— NO

14 < 13 7

— NoO

14 > 13 7

— Yes
But there 1s no sub-tree....
Not exist!

Searchin Pl
g = 3 event
== sponsor

Recursive-Search(x, k)
1f X = NULL or key[x]= k
return x
else 1f k < key[x]
return Recursive-search(left[x],k)
else
return Recursive-search(right[x],k)

SO v A W IN

Made By mike199250

Insertion I—
TEES event
=k sponsor

Insert a key to a binary search tree.

Searching the key, then add a new node
with the key value at the external place.

(15
Example:
Insert 14 o K
Insert o o . 0
(2 O (o

Made By mike199250

; -
@ -
Insertion S
?;== evemsor

« ITnsert 14

Made By mike199250

« Insert 14

« Add a new node!

Insertion

Made By mike199250

« Insert 14

« Add a new node!

Insertion

e %
D

)

(=)

I rmational Collegi:

ACIM Ersgrammming Contest

TEES eve

ES sponsor

Insertion

« Insert 14

« Wwho 1s my father?

e %
D

)

(=)

I rmational Collegi:

ACIM Ersgrammming Contest

TEES eve

ES sponsor

Insertion

« Insert 14

« Wwho 1s my father?

e %
D

)

(=)

I rmational Collegi:

ACIM Ersgrammming Contest

TEES eve

ES sponsor

; -
. e
I n S r t I n acm R
e ‘ ' IERT |Svem
EEEE sponsor

« Insert 14 Q
 Done! o o

Made By mike199250

; -
@ -
Insertion S
?;== evemsor

« Insert 19

Made By mike199250

e Insert 19

« Add a new node!

Insertion

Made By mike199250

e Insert 19

« Add a new node!

Insertion

Made By mike199250

Insertion

e Insert 19

« Wwho 1s my father?

Made By mike199250

Insertion

e Insert 19

« Wwho 1s my father?

Made By mike199250

; -
. e
I n S r t I n acm R
e ‘ ' IERT |Svem
EEEE sponsor

. Insert 19 (15)
* Done! o o

Made By mike199250

Insertion e
Insert(Tree, k)
1. p € NULL 10. if p = NULL
2. X € root[Tree] 11. root[Tree] €& z
3. while x = NULL 12. /¥ Tree was empty */
4 do p € x 13. else 1if k < key[p]
5 1f k < key[x] 14. left[p]l € z
6. x € left[x] 15. /* ex: 19 < 20 */
7. else 16. else
8 X € right[x] 17. right[p] € z
9. z € new node 18. /* ex: 14 > 13 */

Made By mike199250

D I t H ACIM ispstions! Cotiegiate
eietion S
sponsor

Made By mike199250

« Example:
« Deleting 4

Deletion

Made By mike199250

« Example:
« Deleting 4

Deletion

Made By mike199250

« Example:

« Deleting 13

Deletion

Deletion comezzezs
== event
sponsor

« Deleting a node on a binary search tree.

| (>
- Example:
. (192

. Deleting 13 ONOIONES
(2 (O

Made By mike199250

« Example:

« Deleting 19

Deletion

Deletion comezzezs
== event
sponsor

« Deleting a node on a binary search tree.

« Deleting 19

« Example: 0
O
OB OO
ONONORD

Made By mike199250

200
gl

D I t H ACIM ispstions! Cotiegiate
eietion S
== sponsor

« Deleting a node on a binary search tree.

Made By mike199250

200
gl

D I t H acm fesion! cotegiate
eietion S
== sponsor

« Deleting a node on a binary search tree.

« Deleting a leaf: Simply remove 1it.

Made By mike199250

D e I Et i 0 n ACIMN o Cona®
T=m event
=% sponsor

Deleting

Deleting

Deleting
nhode and

a node on a binary search tree.

a leaf: Simply remove 1it.

a node with 1 child: Remove the
replace 1t with 1ts child.

Made By mike199250

D e I Et i 0 n ACIMN o Cona®
TERE event
ponsor

« Deleting a node on a binary search tree.

« Deleting a leaf: Simply remove 1it.

 Deleting a node with 1 child: Remove the
node and replace 1t with 1ts child.

2 : Call the
node to be deleted N. Choose 1ts 1n-order
successor or predecessor node, R. Replace
the data of N with the data of R, then
delete R.

Made By mike199250

Deletion RomEEE
TR event
ponsor

« Deleting a node on a binary search tree.

e Three cases!

« Example:

« Deleting 4
« Deleting 13
« Deleting 15

Made By mike199250

« Deleting 4

; -
. a
Deletion Romi
?;= g evemsor

Made By mike199250

Deletion

« Deleting 4

« SImply remove 1t!

Made By mike199250

Deletion

« Deleting 4

« SImply remove 1t!
 Done!

Made By mike199250

« Deleting 13

e Remove 1t!

; -
. a
Deletion Romi
?;= g evemsor

Made By mike199250

« Deleting 13

e Remove 1t!

; -
Deletion Romi
IEEE evemsor

Made By mike199250

< N
200
[]
Deletion somaite
=== | event
sponsor

« Deleting 13 0
« Replace 1t with o 0
1es chtid (3 CCQry

Made By mike199250

« Deleting 13

« Replace 1t with

1ts child

Deletion

Made By mike199250

« Deleting 13

« Replace 1t with

1ts child

Deletion

Made By mike199250

« Deleting 13

e Done!

; -
Deletion Romi
IEEE evemsor

Made By mike199250

« Deleting 15

; -
. a
Deletion Romi
?;= g evemsor

Made By mike199250

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

« Replace!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

« Replace!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

e Case two!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

e Case two!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

e Case two!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

e Case two!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

e Case two!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

e Case two!

« Deleting 15

e Successor of 15

1s 17

Deletion

Made By mike199250

e Case two!

« Deleting 15

e Successor of 15

1s 17

e Donel

Deletion

Made By mike199250

I ti acm e

Tree-Minimum(x)
1. while Teft[x] = NULL

2. do x € left[x]
3. return x

Example:
Tree-Minimum(7):
Tree-Minimum(17):
Tree-Minimum(19):

Made By mike199250

Deletion

Tree-Minimum(x)
1. while Teft[x] = NULL

2. do x € left[x]
3. return X

« Example: 0
 Tree-Minimum(/): o

Made By mike199250

Deletion

Tree-Minimum(x)
1. while Teft[x] = NULL

2. do x € left[x]
3. return X

« Example: 0
 Tree-Minimum(/): o

Made By mike199250

Deletion

Tree-Minimum(x)
1. while Teft[x] = NULL

2. do x € left[x]
3. return X

« Example:

 Tree-Minimum(17):

Made By mike199250

Deletion

Tree-Minimum(x)
1. while Teft[x] = NULL

2. do x € left[x]
3. return X

« Example:

e Tree-Minimum(1l7): 2

Made By mike199250

Deletion

Tree-Minimum(x)
1. while Teft[x] = NULL
2. do x € left[x]

3. return X 0

 Example:

« Tree-Minimum(19):

Made By mike199250

Deletion

Tree-Minimum(x)
1. while Teft[x] = NULL
2. do x € left[x]

3. return X 0

 Example:

« Tree-Minimum(19):

Made By mike199250

D e I Et i 0 n ACIMN o Cona®
T=m event
=% sponsor

Tree-successor (x)

1. 1if right[x] = NULL

2. then return Tree-Minimum (right[x])
3. y € plx]

4. While y = NULL and x = rightly]

5. do x € vy

0. y €

/. return vy

Made By mike199250

Deletion

Tree-successor(15):17

Made By mike199250

Deletion

Tree-successor(13):15

Made By mike199250

; -
. e
I t I acm R
2ERE sponsor

Tree-successor(13):15

LIy
Ny
g,
LN |

Made By mike199250

Deletion

Tree-successor(13):15

Made By mike199250

Deletion

.
% 3
e®
.
e®

Made By mike199250

Deletion

.
% 3
e®
.
e®

Made By mike199250

D e I Et i 0 n ACIMN o Cona®
TERE event
ponsor

« Deleting a node on a binary search tree.

« Deleting a leaf: Simply remove 1it.

 Deleting a node with 1 child: Remove the
node and replace 1t with 1ts child.

2 : Call the
node to be deleted N. Choose 1ts 1n-order
successor or predecessor node, R. Replace
the data of N with the data of R, then
delete R.

Made By mike199250

200

I 'ti acm e
I ’ e ‘! ‘ ’ I l === event
= sponsor

Replace(N, R)

1. if p[N] = NULL

2. if N = left[p[N]] /% is a left child */
3. left[p[N]] € R

4. else /% is a right child */
5. right[p[N]] € R

6. if R = NULL

7. p[R] € p[N]

Deletion(Tree, N)

. 1f right[N] = NULL and left[N] = NULL
Replace (N, NULL)

. else if left[N] = NULL or right[N] = NULL
Replace(N, left[N] or right[N])

. else

R €& Tree-Successor(\)

copy R s data into

Deletion(Tree, R)

O NOY U A WIN B

Made By mike199250

Binary Search Tree som s

« It 1s so complicated, and 1t 1s not self-
balancing binary search tree!

Made By mike199250

Binary Search Tree som s

« It 1s so complicated, and 1t 1s not self-
balancing binary search tree!

« Besides, I am so lazy!

Made By mike199250

=

Binary Search Tree o

EE-x N sponsor

It 1is so complicated, and 1t is not self-
balancing binary search tree!

Besides, I am so lazy!

Moreover, time 1S money!

Made By mike199250

=

Binary Search Tree o

EE-x N sponsor

It 1s so complicated, and 1t is not self-
balancing binary search tree!

Besides, I am so lazy!
Moreover, time 1S money!

Don t worry!
— C++ STL map, set might fulfill your dream!

Made By mike199250

Binary Search Tree

How to use them?

Made By mike199250

Binary Search Tree som s

e« How to use them?

« Search the usage of insert, ,
1terator, count, begin, end, clear, find,
, operator overriding, etc.

Made By mike199250

Binary Search Tree “‘“’“"""’

How to use them?

Search the usage of 1insert, ,
1terator, count, begin, end, clear, find,
, operator overriding, etc.

Learn whatever you need.

Made By mike199250

Binary Search Tree scmeear

How to use them?

Search the usage of insert, ,
1terator, count, begin, end, clear, find,
, operator overriding, etc.

Learn whatever you need.

However sometimes you may need your own
self-balancing binary search tree...
— AVL tree, Red-black tree, treap, etc.

Made By mike199250

ACIM Foginming Coneat.

event
sponsor

Binary Search Tree

Information
Tutorials
Refarence
Articles
Forum

C library:
= Containers:

- Arrays>
- <deque>
- < forward_list>
- <list>
- Zmaps
- gqueues
- <sats
- <stack>
- <unordered_map>
- <unordered_set>
- <vector>
Input/Output:
Multi-threading:
Other:

£l

il

Ll

il

multiset
set

set

setiiset

sef:i~get

= member functions:
- gati:beqin

- gat::chegin

- setiicend

- setclear

- setiicount

- gaticrbegin

- setiicrend

- satiemplace

- gatiemplace_hint

el

el

il
Ll
el

el

C A [www.cplusplus.com/reference/set/set/erase/

Not logged in

register

log in

public member function

std:Setllerase

<3et>

|C++98||C++11| (7]

woid

erase (iterator position);
val);

{iterator first, iterator last);

size_type erase (const value types
woid

erase

Erase elements
Removes from the set container either a single element or a range of elements ([first, last)).

This effectively reduces the container size by the number of elements removed, which are destroyed.

. Parameters

pasition
Iterator pointing to a single element to be removed from the set.
Member types iterator and const_iterator are bidirectional iterator types that point to elements.

val
Value to be removed from the set.
Member type value_type is the type of the elements in the container, defined in set as an alias of its first
template parameter (T).

first, last

Iterators specifying a range within the set container to be removed: [first, last). i.e., the range includes all
the elements between first and fast, including the element pointed by first but not the one pointed by last.
Member types iterator and const_iterator are bidirectional iterator types that point to elements.

« Return value

Far the value-based version (2), the function returns the number of elements erased, which in set containers is at
most I.

Member type size_type is an unsigned integral type.

Made By mike199250

Binary Search Tree

acm

International Collegiate
Programming Conlest

event
sponsor

, Example

S/ erasing from set
#include <iostream>
i #ginclude <3et>

int main ()

2t

3td: :set<int> myset;
gtd::set<int>:riterator it:

S/ insert some values:

for (int i=1; i<10; i++) myset.inserc(i*10); J/ 10 20 30 40 50 &0 70 80 90
it = myset.begin();
i b 2] A/ TMit"™ points now to 20

my3et.era3ze (it):
my3et.erase (40);

it = myset.find (60);
myset.erase (it, myset.end(}):

gtd: :cout << "myset contains:":

for (it=myset.begin(): it!=myset.end(); ++it)
gtd:zcont << " " oo ®iEs

gstd: tcout << "An":

return 07

Cutput:
my3et contains: 10 30 50

Made By mike199250

~Let s Practice~

Made By mike199250

POJ 3481

e« Link: http://poj.orq/problem?id=3481

« Think flowing questions:
1. what do we need?
2. What can we do?

Made By mike199250

http://poj.org/problem?id=3481
http://poj.org/problem?id=3481

Faaa
8
2e0®
gl

acm Lspmri

== event
= sponsor

~Take a Break~

Made By mike199250

%vd
e qoo
International Collegiate

acm gl
event
sponsor

Heap

Made By mike199250

H e a p ACIM e et

« A specialized tree-based
that satisfies the heap property: If A 1is
a parent node of B then the key of node A
1s ordered with respect to the key of

node B with the same ordering applying
across the heap.

/\ /\

BIG BIG BIG

Made By mike199250

nﬂoo
International Collegiate
H e a ACIM Frogramming Contst
== event
sponsor

Some operations:

heapify:

find-max or find-min:
delete-max or delete-min
increase-key or decrease-key
insert

merge

Different types of heaps the operations in different
ways.

Made By mike199250

200
gl

International Collegiate
H e a p ACIM rrogramming Contest
T=25 | event
== sponsor

Some variants:

Binomial heap
Fibonacci heap
etc.

Different types of heaps the operations in different
ways.

Made By mike199250

Faaa
8
2e0®
gl

acm Lspmri

== event
= sponsor

Binary Heap

Made By mike199250

200
gl

Binary Heap Rom

« Using a binary tree.

Made By mike199250

S
7 é%
000

gl

Binary Heap Rom

« Using a binary tree.
« Shape property: A complete binary tree!

Made By mike199250

Binary Heap somii

« Using a binary tree.
« Shape property: A complete binary tree!

All nodes are either > or

< each of its children.

Made By mike199250

Binary Heap st

Using a binary tree.
Shape property: A complete binary tree!

All nodes are either > or

< each of its children.

children.
children.

max-heaps:
min-heaps:

Made By mike199250

Binary Heap somytess

Using a binary tree.
Shape property: A complete binary tree!

All nodes are either > or
< each of its children.

children.
children.

max-heaps: >
min-heaps: <

Oordering of siblings 1n a heap 1s not
specified!

Made By mike199250

Complete Binary Tree i

« Every level, except the last, 1s
completely filled, and all nodes are as
far left as possible.

16
(14 Cio) 2
G GG B SE
Complete binary tree @ o

Not complete binary tree

Made By mike199250

Binary Heap somzszzres

It 1is
However,

to write tree structure.
we are more

Made By mike199250

200
gl

Binary Heap i

It 1s to write tree structure.
However, we are more

Don t worry!

We can use the index to represent the
node on the tree. °

Made By mike199250

Binary Heap

root 1s A[1]

For A[1]
Left child 1s A[1%2]
Right child is A[1%2+1]
Parent 1s A[floor(i/2)] 1

Binary Heap somytess

 length[A]: number of elements in A.

« heap-length[A]l: number of elements in the
heap stored within A.

« heap-length[A] < length[A] ;

Made By mike199250

Binary Heap somytess

N
IA
(@)

length[A]: number of elements 1n A.

heap-length[A]l: number of elements in the
heap stored within A.

heap-length[A] < Tength[A] ;

Made By mike199250

Binary Heap

1 2 3 4 5 6

[16]14]10] 8]25] 3]

=
Max-Heap somsi

« Assume that sub-trees are heaps, but A[1]
may be smaller than 1ts children.

Made By mike199250

Max-Heap BCmSEr s

« Assume that sub-trees are heaps, but A[1]
may be smaller than 1ts children.

« Max-Heapify(A, i): A[1] will downward-
move, so that the sub-tree rooted at A[1]
becomes a heap.

Made By mike199250

e
%
2e0®

=== = ponsor

Made By mike199250

e
%
2e0®

=== = ponsor

Made By mike199250

e
%
2e0®

=== = ponsor

Made By mike199250

e
%
2e0®

=== = ponsor

Made By mike199250

e
%
2e0®

=== = ponsor

Made By mike199250

e
%
2e0®

=== = ponsor

Made By mike199250

e
%
2e0®

=== = ponsor

Made By mike199250

Max-Hea s
§§== eventsﬂr

Max-Heapify(A, 1)

. left € 1%2

right € 1%2+1

. largest € 1

. 1T left < heap-length[A] and A[left] > A[largest]
largest €& Tleft

. 1T right < heap-length[A] and A[right] > A[largest]
largest € right

. 1T largest = 1

swap(A[1], A[largest])

10. Max-heapify(A, largest)

O 00O NOYUVI &~ WINBRH

Made By mike199250

=
Max-Heap

aACM i Conta”

Time complexity of Max-Heapify(A, 1)?

Made By mike199250

200

Max-Heap Rom s
= nt

Time complexity of Max-Heapify(A, i)?

In the worst case, the node has to be swapped with

1ts child on each level until 1t reaches the bottom
lTevel.

Made By mike199250

200

Max-Hea somszes
£ err‘fsor

Time complexity of Max-Heapify(A, i)?

In the worst case, the node has to be swapped with

1ts child on each level until 1t reaches the bottom
lTevel.

So the time complexity relative to the height of the
tree. 0(/) or 0(log N)

Made By mike199250

e
8
2e0®

EEEE ponsor

« How to build the entire heap?

200

Max-Heap R
?;f?—?_' e"emsur

« How to build the entire heap?

« Recursively build the sub-trees first, then do max-
heapify?

200

a a ACT pions cotege
?;f?—?_' e"emsur

How to build the entire heap?

Recursively build the sub-trees first, then do max-
heapify?

We can do max-heapify(A, i) from i = length[A] to 1!

Made By mike199250

200

a a ACT pions cotege
?;f?—?_' e"emsur

How to build the entire heap?

Recursively build the sub-trees first, then do max-
heapify?

We can do max-heapify(A, i) from i = length[A] to 1!

The leaves are already heap!

Made By mike199250

Max-Hea i
?EEE e"emsur

How to build the entire heap?

Recursively build the sub-trees first, then do max-
heapify?

We can do max-heapify(A, i) from i = length[A] to 1!

The leaves are already heap!
> from floor(length[A]l/2) >

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]l<Tength[A]

2.
3.

for 1 & floor(length[A]l/2) down to
Max-Heapify(A, 1)

do

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]<length[A]

2.
3.

for 1 & floor(length[A]l/2) down to 1 do
Max-Heapify(A, 5)

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]<length[A]

2.
3.

for 1 & floor(length[A]l/2) down to 1 do
Max-Heapify (A, 4)

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]<length[A]

2.
3.

for 1 & floor(length[A]l/2) down to 1 do
Max-Heapify (A, 3)

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]<length[A]

2.
3.

for 1 & floor(length[A]l/2) down to 1 do
Max-Heapify(A, 2)

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]<length[A]

2.
3.

for 1 & floor(length[A]l/2) down to 1 do
Max-Heapify(A, 2)

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]<length[A]

2.
3.

for 1 & floor(length[A]l/2) down to 1 do
Max-Heapify(A, 2)

Made By mike199250

Max-Heap

Build-Max-Heap(A) :
1. heap-length[A]<length[A]

2.
3.

for 1 & floor(length[A]l/2) down to 1 do
Max-Heapify(A, 1)

Made By mike199250

Max-Heap

Build-Max-Heap(A) :

1. heap-length[A]<length[A]

2. for 1 & floor(length[A]/2) down to 1 do
3. Max-Heapify(A, 1)

Done!

Made By mike199250

=
Max-Heap

aACM i Conta”

Time complexity of Build-Max-Heap(A)?

Made By mike199250

200

a a ACT pions cotege
?;f?—?_' e"emsur

« Time complexity of Build-Max-Heap(A)?

« In the first glimpse:
— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

Made By mike199250

200

M H ACIMN o Cona®
axX-ned
IR (S,

« Time complexity of Build-Max-Heap(A)?

« In the first glimpse:
— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

« The total 1s O(N*log N)!

Made By mike199250

200

M H ACIM e et
ax-Heap
ka1, 1 ent

Time complexity of Build-Max-Heap(A)?
In the first glimpse:

— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

The total 1s O(N*log N)!

But.. the Max-Heapify(A, i) is not always 0(log N)!

Made By mike199250

Max-Hea semzemzrs
TEM, |2,

Time complexity of Build-Max-Heap(A)?
In the first glimpse:

— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

The total 1s O(N*log N)!

But.. the Max-Heapify(A, i) is not always 0(log N)!

The height of heap is Llog(N)-!, the number of nodes
at height h is < rn/2M1,,

Made By mike199250

Max-Hea semezrs
TEFL, Sponser

Time complexity of Build-Max-Heap(A)?

In the first glimpse:
— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

The total 1s O(N*log N)!

But.. the Max-Heapify(A, i) is not always 0(log N)!
The height of heap is Llog(N)-!, the number of nodes
at height h is < rn/2M1,,

And then

Made By mike199250

Max-Hea semezrs
TEFL, Sponser

Time complexity of Build-Max-Heap(A)?

In the first glimpse:
— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

The total 1s O(N*log N)!

But.. the Max-Heapify(A, i) is not always 0(log N)!
The height of heap is Llog(N)-!, the number of nodes
at height h is < rn/2M1,,

And then..

Made By mike199250

Max-Hea semezrs
TEFL, Sponser

Time complexity of Build-Max-Heap(A)?

In the first glimpse:
— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

The total 1s O(N*log N)!

But.. the Max-Heapify(A, i) is not always 0(log N)!

The height of heap is Llog(N)-!, the number of nodes
at height h is < rn/2M1,,

Made By mike199250

Max-Hea semezrs
TEFL, Sponser

Time complexity of Build-Max-Heap(A)?

In the first glimpse:
— About n/2 calls to Max-Heapify(A, 1i).
— Each takes 0(log N) time.

The total 1s O(N*log N)!

But.. the Max-Heapify(A, i) is not always 0(log N)!
The height of heap is Llog(N)-!, the number of nodes
at height h is < rn/2M1,,

And then..... O(N)!

Made By mike199250

200

Max-Heap BCmSEr s
ISV oo

= ponsor

« Did we forget something?
— Array = Max-heap or Min-heap

Made By mike199250

200

IVIaX-Hea p ACIM fsgraensCotesle
?;f?—?_' e"emsur

« Did we forget something?
— Array = Max-heap or Min-heap

« Insertion and Deletion?

Made By mike199250

200

Max-Hea mE——
IBM. |5

Did we forget something?
— Array = Max-heap or Min-heap

Insertion and Deletion?
Add an element to the heap
Delete the root from the heap

Made By mike199250

= -
Max-Heap

acm pupms

Did we forget something?
— Array = Max-heap or Min-heap

Insertion and Deletion?
Add an element to the heap
Delete the root from the heap

conform the

first, then restore the
heap property by traversing up or down.

Made By mike199250

= -
Max-Heap

acm pupms

Did we forget something?
— Array = Max-heap or Min-heap

Insertion and Deletion?
Add an element to the heap
Delete the root from the heap

conform the

first, then restore the
heap property by traversing up or down.

The Tast element of the bottom level!

Made By mike199250

200

Max-Hea s
L] = err‘fsor

Insertion algorithm
1. Add the element to the bottom level of the heap.

2. Compare the added element with 1ts parent.
If they are in the correct order, stop.

3. If not, swap the element with its parent and return
to step 2.

« Up-heap

Made By mike199250

200
gl

Max-Hea i
IBM. |5

Deletion algorithm

1. Replace the root of the heap with the Tast element
of the bottom level.

2. Compare the new root with i1ts children.
If they are in the correct order, stop.

3. If not, swap the element with one of i1ts children
and return to step 2.(swap with larger child for

Max-heap, swap with smaller child for Min-heap).

« Down-heap, Max-heapify is similar to it.

Made By mike199250

200

Time complexity of and Deletion?

In the worst case, the node would traverse from
bottom to root or from root to bottom.

So the time complexity relative to the height of the
tree. 0(/2) or 0(Clog N)

Made By mike199250

= -
Max-Heap

acm pupms

HeapSort

algorithm.
e not a stable sort.

Time complexity:

— worst case: O(Nlog N)
— average:

O(Nlog N)

HeapSort algorithm

1. build the heap
2.

repeatedly removing the root, and inserting into
the array.

Made By mike199250

200

a a ACT pions cotege
?;f?—?_' e"emsur

 Previous question again!

Made By mike199250

200
gl

Max-Heap acmEERET
ke -1..1 event

 Previous question again!

« T am so lazy!

Made By mike199250

200
gl

hﬂaxlieap i
-
T=2= |event

 Previous question again!
« T am so lazy!

« Time 1S money!

Made By mike199250

200
gl

Max-Hea P Cme
= event

Previous question again!
I am so lazy!
Time 1S money!

Don t worry!
— C++ STL priority_queue might fulfill your dream!

Made By mike199250

~Let s Practice~

Made By mike199250

UVa 10954 R
TEEE event
=== sponsor

Link:
http://uva.onlinejudge.org/index.php?opti

on=com_onlinejudge&Itemid=8&category=21&p

age=show_problem&problem=1895

Made By mike199250

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895

Va 1 9 5 q ACIMN o Cona®
= 3 event
| ' ‘ ’ L sponsor

e Hint:

1.If there are only three numbers a, b, c
and a < b < c, how should we add?

2.Two numbers after addition, are still
two numbers?

Made By mike199250

Problems

POJ(6)
— 1338, 2255

ACIM Foginming Coneat.

, 2431, 2442
uva(8)

— 501, 712,
12347

, 3253, 3481

10821, 10909, 10954, 11995

E N £ 5w

A—h——/kﬂgg%ﬂqla.%g S J‘xﬁ‘jiglj%l
AR E AR

Made By mike199250

, 11997,

8 5f FP Y S RE 2R E

