
Made By mike199250 

NCKU CSIE Programming Contest Training Course 

 

Yi Long, Lu (mike199250) 

mike199250@gmail.com 

http://myweb.ncku.edu.tw/~f74991073/2014_02_26_BST_BH.zip 
Department of Computer Science and Information Engineering 

National Cheng Kung University 
Tainan, Taiwan 



Made By mike199250 

Outline 

• Binary tree 

• Binary search tree 

• Practice - POJ 3481 

• Heap 

• Binary heap 

• Practice - Uva 10954 

• Problems 



Made By mike199250 

Binary Tree 



Made By mike199250 

Binary Tree 

• Each node has at most two children(left 
child and right child). 

 

 

 

 

 

 

                          Not Binary tree 

      Binary tree 

16 

14 10 

8 25 9 

3 5 

23 

13 25 

36 7 3 



Made By mike199250 

Full Binary Tree 

• Every node other than the leaves has two 
children. 

 

 

 

 

 

 

 

    Full binary tree   Not full binary tree 

 

16 

14 10 

8 25 9 3 

5 

23 

13 25 

36 

3 3 6 



Made By mike199250 

Complete Binary Tree 

• Every level, except the last, is 
completely filled, and all nodes are as 
far left as possible. 

 

 

 

 

 

 Complete binary tree 

                   Not complete binary tree 

 

16 

14 10 

8 25 3 

23 

13 25 

36 6 



Made By mike199250 

Traversal 

 

 

 

 

 

 

• Pre-order: 16 14 8 25 10 3 

• In-order: 8 14 25 16 3 10 

• Post-order: 8 25 14 3 10 16 

 

16 

14 10 

8 25 3 



Made By mike199250 

Traversal 

 

 

 

 

 

In-order-Tree-Walk(x) 

1.  if x is not NULL 

2.      then In-order-Tree-Walk(left[x]) 

3.           print key[x] 

4.           In-order-Tree-Walk(right[x]) 

 

16 

14 10 

8 25 3 



Made By mike199250 

Binary Search Tree 



Made By mike199250 

Binary Search Tree 

• The left sub-tree of a node contains only 
nodes with keys less than the node`s key. 

 

 



Made By mike199250 

Binary Search Tree 

• The left sub-tree of a node contains only 
nodes with keys less than the node`s key. 

 

• The right sub-tree of a node contains 
only nodes with keys greater than the 
node`s key. 

 

 



Made By mike199250 

Binary Search Tree 

• The left sub-tree of a node contains only 
nodes with keys less than the node`s key. 

 

• The right sub-tree of a node contains 
only nodes with keys greater than the 
node`s key. 

 

• The left and right sub-tree are also 
binary search tree. 

 

 



Made By mike199250 

Binary Search Tree 

• The left sub-tree of a node contains only 
nodes with keys less than the node`s key. 

 

• The right sub-tree of a node contains 
only nodes with keys greater than the 
node`s key. 

 

• The left and right sub-tree are also 
binary search tree. 

 

• There must be no duplicate nodes. 

 



Made By mike199250 

Binary Search Tree 

 

 

 

 

 

 

• Left key < node`s key 

• Right key > node`s key 

9 

5 13 

2 7 17 

4 

5 

7 

9 



Made By mike199250 

Binary Search Tree 

• Operations: Searching, Insertion, 
Deletion can be performed in O(h) time, 
where h is the height of the tree. 

 



Made By mike199250 

Binary Search Tree 

• Operations: Searching, Insertion, 
Deletion can be performed in O(h) time, 
where h is the height of the tree. 

 

• Worst case: h=O(N) 

• Balanced BST: h=O(log N) 

 



Made By mike199250 

Binary Search Tree 

• Operations: Searching, Insertion, 
Deletion can be performed in O(h) time, 
where h is the height of the tree. 

 

• Worst case: h=O(N) 

• Balanced BST: h=O(log N) 

 

• How to guarantee h=O(log N)? 



Made By mike199250 

Binary Search Tree 

• Operations: Searching, Insertion, 
Deletion can be performed in O(h) time, 
where h is the height of the tree. 

 

• Worst case: h=O(N) 

• Balanced BST: h=O(log N) 

 

• How to guarantee h=O(log N)? 
– Self-balancing Binary Search Tree! 

– AVL tree, Red-black tree, Treap, etc. 



Made By mike199250 

Searching 

• Searching a binary search tree for a 
specific key. 

• Can be a recursive or an iterative 
process. 

 

• Example: 

• Searching 13 

• Searching 14 

15 

6 18 

3 7 17 20 

13 

9 

2 4 



Made By mike199250 

Searching 

• Searching 13 
15 

6 18 

3 7 17 20 

13 

9 

2 4 



Made By mike199250 

Searching 

• Searching 13 

 

• 13 = 15 ? 

– No 

• 13 < 15 ? 

– Yes 

15 

? ? 

? ? ? ? 

? 

? 

? ? 



Made By mike199250 

Searching 

• Searching 13 

 

• 13 = 6 ? 

– No 

• 13 < 6 ? 

– No 

• 13 > 6 ? 

– Yes 

? 

6 ? 

? ? ? ? 

? 

? 

? ? 



Made By mike199250 

Searching 

• Searching 13 

 

• 13 = 7 ? 

– No 

• 13 < 7 ? 

– No 

• 13 > 7 ? 

– Yes 

? 

? ? 

? 7 ? ? 

? 

? 

? ? 



Made By mike199250 

Searching 

• Searching 13 

 

• 13 = 13 ? 

– Yes 

• Find! 

? 

? ? 

? ? ? ? 

13 

? 

? ? 



Made By mike199250 

Searching 

• Searching 14 
15 

6 18 

3 7 17 20 

13 

9 

2 4 



Made By mike199250 

Searching 

• Searching 14 

 

• 14 = 15 ? 

– No 

• 14 < 15 ? 

– Yes 

15 

? ? 

? ? ? ? 

? 

? 

? ? 



Made By mike199250 

Searching 

• Searching 14 

 

• 14 = 6 ? 

– No 

• 14 < 6 ? 

– No 

• 14 > 6 ? 

– Yes 

? 

6 ? 

? ? ? ? 

? 

? 

? ? 



Made By mike199250 

Searching 

• Searching 14 

 

• 14 = 7 ? 

– No 

• 14 < 7 ? 

– No 

• 14 > 7 ? 

– Yes 

? 

? ? 

? 7 ? ? 

? 

? 

? ? 



Made By mike199250 

Searching 

• Searching 14 

 

• 14 = 13 ? 

– No 

• 14 < 13 ? 

– No 

• 14 > 13 ? 

– Yes 

• But there is no sub-tree…… 

• Not exist! 

 

? 

? ? 

? ? ? ? 

13 

? 

? ? 



Made By mike199250 

Searching 

Recursive-Search(x, k) 

1.  if x = NULL or key[x]= k 

2.      return x 

3.  else if k < key[x] 

4.      return Recursive-search(left[x],k) 

5.  else 

6.      return Recursive-search(right[x],k) 



Made By mike199250 

Insertion 

• Insert a key to a binary search tree. 

• Searching the key, then add a new node 
with the key value at the external place. 

 

• Example: 

• Insert 14 

• Insert 19 

15 

6 18 

3 7 17 20 

13 

9 

2 4 



Made By mike199250 

Insertion 

• Insert 14 
15 

6 18 

3 7 17 20 

13 

9 

2 4 



Made By mike199250 

Insertion 

• Insert 14 

 

• Add a new node! 

 

? 

? ? 

? ? ? ? 

13 

? 

? ? 



Made By mike199250 

Insertion 

• Insert 14 

 

• Add a new node! 

 

? 

? ? 

? ? ? ? 

13 

? 

? ? 

14 



Made By mike199250 

Insertion 

• Insert 14 

 

• Who is my father? 

 

? 

? ? 

? ? ? ? 

13 

? 

? ? 

14 



Made By mike199250 

Insertion 

• Insert 14 

 

• Who is my father? 

 

? 

? ? 

? ? ? ? 

13 

? 

? ? 

14 



Made By mike199250 

Insertion 

• Insert 14 

 

• Done! 

15 

6 18 

3 7 17 20 

13 

9 

2 4 

14 



Made By mike199250 

Insertion 

• Insert 19 
15 

6 18 

3 7 17 20 

13 

9 

2 4 



Made By mike199250 

Insertion 

• Insert 19 

 

• Add a new node! 

 

? 

? ? 

? ? ? 20 

? 

? 

? ? 



Made By mike199250 

Insertion 

• Insert 19 

 

• Add a new node! 

 

? 

? ? 

? ? ? 20 

? 

? 

? ? 19 



Made By mike199250 

Insertion 

• Insert 19 

 

• Who is my father? 

 

? 

? ? 

? ? ? 20 

? 

? 

? ? 19 



Made By mike199250 

Insertion 

• Insert 19 

 

• Who is my father? 

 

? 

? ? 

? ? ? 20 

? 

? 

? ? 19 



Made By mike199250 

Insertion 

• Insert 19 

 

• Done! 

15 

6 18 

3 7 17 20 

13 

9 

2 4 19 



Made By mike199250 

Insertion 

Insert(Tree, k) 

1. p  NULL 

2. x  root[Tree] 

3. while x ≠ NULL 

4.   do p  x 

5.     if k < key[x] 

6.       x  left[x] 

7.     else 

8.       x  right[x] 

9. z  new node 

 

 

 

10. if p = NULL 

11.   root[Tree]  z 

12.   /* Tree was empty */ 

13. else if k < key[p] 

14.   left[p]  z 

15.   /* ex: 19 < 20 */ 

16. else 

17.   right[p]  z 

18.   /* ex: 14 > 13 */ 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

 

 

• Example: 

• Deleting 4 

• Deleting 13 

• Deleting 19 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

 

 

• Example: 

• Deleting 4 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

 

 

• Example: 

• Deleting 4 

15 

6 19 

3 7 17 20 

13 

9 

2 18 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

 

 

• Example: 

 

• Deleting 13 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

 

 

• Example: 

 

• Deleting 13 

15 

6 19 

3 7 17 20 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

 

 

• Example: 

 

 

• Deleting 19 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

 

 

• Example: 

 

 

• Deleting 19 

15 

6 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

• Deleting a leaf: Simply remove it. 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

• Deleting a leaf: Simply remove it. 

• Deleting a node with 1 child: Remove the 
node and replace it with its child. 

 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

• Deleting a leaf: Simply remove it. 

• Deleting a node with 1 child: Remove the 
node and replace it with its child. 

 

• Deleting a node with 2 children: Call the 
node to be deleted N. Choose its in-order 
successor or predecessor node, R. Replace 
the data of N with the data of R, then 
delete R. 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

• Three cases! 

 

• Example: 

• Deleting 4 

• Deleting 13 

• Deleting 15 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 4 15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 4 

 

• Simply remove it! 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 4 

 

• Simply remove it! 

• Done! 

15 

6 19 

3 7 17 20 

13 

9 

2 18 



Made By mike199250 

Deletion 

• Deleting 13 

 

• Remove it! 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 13 

 

• Remove it! 

15 

6 19 

3 7 17 20 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 13 

 

• Replace it with 

  its child 

15 

6 19 

3 7 17 20 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 13 

 

• Replace it with 

  its child 

15 

6 19 

3 7 17 20 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 13 

 

• Replace it with 

  its child 

15 

6 19 

3 7 17 20 

2 4 18 9 



Made By mike199250 

Deletion 

• Deleting 13 

 

• Done! 

15 

6 19 

3 7 17 20 

2 4 18 9 



Made By mike199250 

Deletion 

• Deleting 15 15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Replace! 

15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Replace! 

17 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Delete R(17)! 

• Case two! 

17 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Delete R(17)! 

• Case two! 

17 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Delete R(17)! 

• Case two! 

17 

6 19 

3 7 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Delete R(17)! 

• Case two! 

17 

6 19 

3 7 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Delete R(17)! 

• Case two! 

17 

6 19 

3 7 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Delete R(17)! 

• Case two! 

17 

6 19 

3 7 18 20 

13 

9 

2 4 



Made By mike199250 

Deletion 

• Deleting 15 

 

• Successor of 15 

  is 17 

 

• Delete R(17)! 

• Case two! 

 

• Done! 

17 

6 19 

3 7 18 20 

13 

9 

2 4 



Made By mike199250 

Deletion 

Tree-Minimum(x) 

1. while left[x] ≠ NULL 

2.   do x  left[x] 

3. return x 

 

 

• Example: 

• Tree-Minimum(7):  

• Tree-Minimum(17):  

• Tree-Minimum(19):  

 

 

 

17 

6 19 

3 7 18 20 

13 

9 

2 4 



Made By mike199250 

Deletion 

Tree-Minimum(x) 

1. while left[x] ≠ NULL 

2.   do x  left[x] 

3. return x 

 

 

• Example: 

• Tree-Minimum(7):  

 

 

 

7 

13 

9 



Made By mike199250 

Deletion 

Tree-Minimum(x) 

1. while left[x] ≠ NULL 

2.   do x  left[x] 

3. return x 

 

 

• Example: 

• Tree-Minimum(7): 7 

 

 

 

7 

13 

9 



Made By mike199250 

Deletion 

Tree-Minimum(x) 

1. while left[x] ≠ NULL 

2.   do x  left[x] 

3. return x 

 

 

• Example: 

•   

• Tree-Minimum(17):   

 

 

 

17 

6 19 

3 7 18 20 

13 

9 

2 4 



Made By mike199250 

Deletion 

Tree-Minimum(x) 

1. while left[x] ≠ NULL 

2.   do x  left[x] 

3. return x 

 

 

• Example: 

•   

• Tree-Minimum(17):  2 

 

 

 

17 

6 19 

3 7 18 20 

13 

9 

2 4 



Made By mike199250 

Deletion 

Tree-Minimum(x) 

1. while left[x] ≠ NULL 

2.   do x  left[x] 

3. return x 

 

 

• Example: 

 

 

• Tree-Minimum(19):  

 

 

 

19 

18 20 



Made By mike199250 

Deletion 

Tree-Minimum(x) 

1. while left[x] ≠ NULL 

2.   do x  left[x] 

3. return x 

 

 

• Example: 

 

 

• Tree-Minimum(19): 18 

 

 

 

19 

18 20 



Made By mike199250 

Deletion 

Tree-Successor(x) 

1.  if right[x] ≠ NULL 

2.    then return Tree-Minimum (right[x]) 

3.  y  p[x] 

4.  While y ≠ NULL and x = right[y] 

5.    do x  y 

6.       y  p[y] 

7.  return y 

 



Made By mike199250 

Deletion 

Tree-Successor(15):17 

 
15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

Tree-Successor(13):15 

 
15 

6 19 

3 7 17 20 

13 

9 

2 4 18 



Made By mike199250 

Deletion 

Tree-Successor(13):15 

 
15 

6 19 

3 7 17 20 

13 

9 

2 4 18 

y 

x 



Made By mike199250 

Deletion 

Tree-Successor(13):15 

 
15 

6 19 

3 7 17 20 

13 

9 

2 4 18 

y 

x 



Made By mike199250 

Deletion 

Tree-Successor(13):15 

 
15 

6 19 

3 7 17 20 

13 

9 

2 4 18 

y 

x 



Made By mike199250 

Deletion 

Tree-Successor(13):15 

 
15 

6 19 

3 7 17 20 

13 

9 

2 4 18 

y 

x 



Made By mike199250 

Deletion 

• Deleting a node on a binary search tree. 

 

• Deleting a leaf: Simply remove it. 

• Deleting a node with 1 child: Remove the 
node and replace it with its child. 

 

• Deleting a node with 2 children: Call the 
node to be deleted N. Choose its in-order 
successor or predecessor node, R. Replace 
the data of N with the data of R, then 
delete R. 



Made By mike199250 

Deletion 

Deletion(Tree, N) 

1. if right[N] = NULL and left[N] = NULL  

2.    Replace(N, NULL) 

3. else if left[N] ≠ NULL or right[N] ≠ NULL 

4.    Replace(N, left[N] or right[N] ) 

5. else 

6.    R  Tree-Successor(N) 

7.    copy R`s data into N 

8.    Deletion(Tree, R) 

Replace(N, R) 
1. if p[N] ≠ NULL 
2.    if N = left[ p[N] ] /* N is a left  child */ 
3.       left[ p[N] ]  R 
4.    else   /* N is a right child */ 
5.       right[ p[N] ]  R 
6. if R ≠ NULL 
7.    p[R]  p[N] 



Made By mike199250 

Binary Search Tree 

• It is so complicated, and it is not self-
balancing binary search tree! 

 



Made By mike199250 

Binary Search Tree 

• It is so complicated, and it is not self-
balancing binary search tree! 

 

• Besides, I am so lazy! 

 



Made By mike199250 

Binary Search Tree 

• It is so complicated, and it is not self-
balancing binary search tree! 

 

• Besides, I am so lazy! 

 

• Moreover, time is money! 

 



Made By mike199250 

Binary Search Tree 

• It is so complicated, and it is not self-
balancing binary search tree! 

 

• Besides, I am so lazy! 

 

• Moreover, time is money! 

 

• Don`t worry! Be Happy! 

– C++ STL map, set might fulfill your dream! 

 



Made By mike199250 

Binary Search Tree 

• How to use them? 

 



Made By mike199250 

Binary Search Tree 

• How to use them? 

 

• Search the usage of insert, erase, 
iterator, count, begin, end, clear, find, 
, operator overriding, etc. 



Made By mike199250 

Binary Search Tree 

• How to use them? 

 

• Search the usage of insert, erase, 
iterator, count, begin, end, clear, find, 
, operator overriding, etc. 

 

• Learn whatever you need. 



Made By mike199250 

Binary Search Tree 

• How to use them? 

 

• Search the usage of insert, erase, 
iterator, count, begin, end, clear, find, 
, operator overriding, etc. 

 

• Learn whatever you need. 

• However sometimes you may need your own 
self-balancing binary search tree…… 

– AVL tree, Red-black tree, treap, etc. 



Made By mike199250 

Binary Search Tree 

 



Made By mike199250 

Binary Search Tree 

 



Made By mike199250 

~Let`s Practice~ 



Made By mike199250 

POJ 3481 

• Link: http://poj.org/problem?id=3481 

 

• Think flowing questions: 

    1. What do we need? 

    2. What can we do? 

 

http://poj.org/problem?id=3481
http://poj.org/problem?id=3481


Made By mike199250 

~Take a Break~ 



Made By mike199250 

Heap 



Made By mike199250 

Heap 

• A specialized tree-based data structure  
that satisfies the heap property: If A is 
a parent node of B then the key of node A 
is ordered with respect to the key of 
node B with the same ordering applying 
across the heap. 

small 

BIG BIG BIG 

BIG 

s s 



Made By mike199250 

Heap 

• Some operations: 

• heapify: 

• find-max or find-min: 

• delete-max or delete-min 

• increase-key or decrease-key 

• insert 

• merge 

 

• Different types of heaps implement the operations in different 

ways. 



Made By mike199250 

Heap 

• Some Variants: 

• Binary heap 

• Binomial heap 

• Fibonacci heap 

• etc. 

 

 

 

• Different types of heaps implement the operations in different 

ways. 



Made By mike199250 

Binary Heap 



Made By mike199250 

Binary Heap 

• Using a binary tree. 



Made By mike199250 

Binary Heap 

• Using a binary tree. 

• Shape property: A complete binary tree! 



Made By mike199250 

Binary Heap 

• Using a binary tree. 

• Shape property: A complete binary tree! 

• Heap property: All nodes are either ≥ or 
≤ each of its children. 

 



Made By mike199250 

Binary Heap 

• Using a binary tree. 

• Shape property: A complete binary tree! 

• Heap property: All nodes are either ≥ or 
≤ each of its children. 

 

• max-heaps: ≥ children. 

• min-heaps: ≤ children. 

 



Made By mike199250 

Binary Heap 

• Using a binary tree. 

• Shape property: A complete binary tree! 

• Heap property: All nodes are either ≥ or 
≤ each of its children. 

 

• max-heaps: ≥ children. 

• min-heaps: ≤ children. 

 

• Ordering of siblings in a heap is not 
specified! 



Made By mike199250 

Complete Binary Tree 

• Every level, except the last, is 
completely filled, and all nodes are as 
far left as possible. 

 

 

 

 

 

 Complete binary tree 

                   Not complete binary tree 

 

16 

14 10 

8 25 3 

23 

13 25 

36 6 



Made By mike199250 

Binary Heap 

• It is not easy to write tree structure. 
However, we are more familiar with array. 

 

 

 

 16 

14 10 

8 25 3 



Made By mike199250 

Binary Heap 

• It is not easy to write tree structure. 
However, we are more familiar with array. 

 

• Don`t worry! Be Happy! 

• We can use the index to represent the 
node on the tree. 

 

 

 

16 

14 10 

8 25 3 



Made By mike199250 

Binary Heap 

• root is A[1] 

• For A[i] 

•    Left child is A[i*2] 

•    Right child is A[i*2+1] 

•    Parent is A[floor(i/2)] 

16 

14 10 

8 25 3 

1 

4 

2 3 

5 6 



Made By mike199250 

Binary Heap 

• length[A]: number of elements in A. 

• heap-length[A]: number of elements in the 
heap stored within A. 

 

• heap-length[A] ≤ length[A] 

 16 

14 10 

8 25 3 

1 

4 

2 3 

5 6 



Made By mike199250 

Binary Heap 

• length[A]: number of elements in A. 

• heap-length[A]: number of elements in the 
heap stored within A. 

 

• heap-length[A] ≤ length[A] 

 

• 4 ≤ 6 

 

16 

14 10 

8 25 3 

1 

4 

2 3 

5 6 



Made By mike199250 

Binary Heap 

 

 

16 

14 10 

8 25 3 

1 

4 

2 3 

5 6 

16 3 10 14 8 25 

1 2 3 4 5 6 



Made By mike199250 

Max-Heap 

• Assume that sub-trees are heaps, but A[i] 
may be smaller than its children. 

 

 



Made By mike199250 

Max-Heap 

• Assume that sub-trees are heaps, but A[i] 
may be smaller than its children. 

 

• Max-Heapify(A, i): A[i] will downward-
move, so that the sub-tree rooted at A[i] 
becomes a heap. 

 

 



Made By mike199250 

Max-Heap 

 

 
16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

 

 
16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

 

 
16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

 

 
16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

 

 
16 

14 10 

4 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

9 

Max-Heap 

 

 
16 

14 10 

4 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 10 



Made By mike199250 

9 

Max-Heap 

 

 
16 

14 10 

8 7 9 

1 

4 

2 3 

5 6 

3 

2 4 1 

7 

8 10 



Made By mike199250 

Max-Heap 

Max-Heapify(A, i) 

1. left  i*2 

2. right  i*2+1 

3. largest  i 

4. if left ≤ heap-length[A] and A[left] > A[largest] 

5.    largest  left 

6. if right ≤ heap-length[A] and A[right] > A[largest] 

7.    largest  right 

8. if largest ≠ i 

9.    swap(A[i], A[largest]) 

10.   Max-heapify(A, largest) 



Made By mike199250 

Max-Heap 

• Time complexity of Max-Heapify(A, i)? 

 



Made By mike199250 

Max-Heap 

• Time complexity of Max-Heapify(A, i)? 

 

• In the worst case, the node has to be swapped with 
its child on each level until it reaches the bottom 
level. 

 



Made By mike199250 

Max-Heap 

• Time complexity of Max-Heapify(A, i)? 

 

• In the worst case, the node has to be swapped with 
its child on each level until it reaches the bottom 
level. 

 

• So the time complexity relative to the height of the 
tree. O(h) or O(log N)  



Made By mike199250 

Max-Heap 

• How to build the entire heap? 

 

16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

• How to build the entire heap? 

• Recursively build the sub-trees first, then do max-
heapify? 

 

16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

• How to build the entire heap? 

• Recursively build the sub-trees first, then do max-
heapify? 

• We can do max-heapify(A, i) from i = length[A] to 1! 

 

 
16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

• How to build the entire heap? 

• Recursively build the sub-trees first, then do max-
heapify? 

• We can do max-heapify(A, i) from i = length[A] to 1! 

 

• The leaves are already heap! 

 16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

• How to build the entire heap? 

• Recursively build the sub-trees first, then do max-
heapify? 

• We can do max-heapify(A, i) from i = length[A] to 1! 

 

• The leaves are already heap! 

   from floor(length[A]/2) 16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, i) 

16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, 5) 

16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, 4) 

16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, 3) 

16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, 2) 

16 

4 10 

14 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, 2) 

16 

14 10 

4 7 9 

1 

4 

2 3 

5 6 

3 

2 8 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, 2) 

16 

14 10 

8 7 9 

1 

4 

2 3 

5 6 

3 

2 4 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, 1) 

16 

14 10 

8 7 9 

1 

4 

2 3 

5 6 

3 

2 4 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

Build-Max-Heap(A): 

1. heap-length[A]length[A] 

2. for i  floor(length[A]/2) down to 1 do 

3.    Max-Heapify(A, i) 

 

Done! 
16 

14 10 

8 7 9 

1 

4 

2 3 

5 6 

3 

2 4 1 

7 

8 9 10 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 

• The total is O(N*log N)! 

 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 

• The total is O(N*log N)! 

 

• But… the Max-Heapify(A, i) is not always O(log N)! 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 

• The total is O(N*log N)! 

 

• But… the Max-Heapify(A, i) is not always O(log N)! 

• The height of heap is └log(N)┘, the number of nodes 
at height h is ≤ ┌n/2h+1┐. 

 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 

• The total is O(N*log N)! 

 

• But… the Max-Heapify(A, i) is not always O(log N)! 

• The height of heap is └log(N)┘, the number of nodes 
at height h is ≤ ┌n/2h+1┐. 

 

• And then 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 

• The total is O(N*log N)! 

 

• But… the Max-Heapify(A, i) is not always O(log N)! 

• The height of heap is └log(N)┘, the number of nodes 
at height h is ≤ ┌n/2h+1┐. 

 

• And then… 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 

• The total is O(N*log N)! 

 

• But… the Max-Heapify(A, i) is not always O(log N)! 

• The height of heap is └log(N)┘, the number of nodes 
at height h is ≤ ┌n/2h+1┐. 

 

• And then…… 



Made By mike199250 

Max-Heap 

• Time complexity of Build-Max-Heap(A)? 

• In the first glimpse: 
– About n/2 calls to Max-Heapify(A, i). 

– Each takes O(log N) time. 

• The total is O(N*log N)! 

 

• But… the Max-Heapify(A, i) is not always O(log N)! 

• The height of heap is └log(N)┘, the number of nodes 
at height h is ≤ ┌n/2h+1┐. 

 

• And then…… O(N)! 



Made By mike199250 

Max-Heap 

• Did we forget something? 
– Array  Max-heap or Min-heap 

 

 



Made By mike199250 

Max-Heap 

• Did we forget something? 
– Array  Max-heap or Min-heap 

 

 

• Insertion and Deletion? 



Made By mike199250 

Max-Heap 

• Did we forget something? 
– Array  Max-heap or Min-heap 

 

 

• Insertion and Deletion? 

• Add an element to the heap 

• Delete the root from the heap 

 



Made By mike199250 

Max-Heap 

• Did we forget something? 
– Array  Max-heap or Min-heap 

 

 

• Insertion and Deletion? 

• Add an element to the heap 

• Delete the root from the heap 

 

• Conform the shape property first, then restore the 
heap property by traversing up or down. 

 



Made By mike199250 

Max-Heap 

• Did we forget something? 
– Array  Max-heap or Min-heap 

 

 

• Insertion and Deletion? 

• Add an element to the heap 

• Delete the root from the heap 

 

• Conform the shape property first, then restore the 
heap property by traversing up or down. 

 

• The last element of the bottom level! 



Made By mike199250 

Max-Heap 

Insertion algorithm 

1. Add the element to the bottom level of the heap. 

 

2. Compare the added element with its parent. 

   If they are in the correct order, stop. 

 

3. If not, swap the element with its parent and return  

   to step 2. 

 

 

• Up-heap 



Made By mike199250 

Max-Heap 

Deletion algorithm 

1. Replace the root of the heap with the last element  

   of the bottom level. 

2. Compare the new root with its children. 

   If they are in the correct order, stop. 

 

3. If not, swap the element with one of its children  

   and return to step 2.(swap with larger child for  

   Max-heap, swap with smaller child for Min-heap). 

 

• Down-heap, Max-heapify is similar to it. 



Made By mike199250 

Max-Heap 

• Time complexity of Insertion and Deletion? 

 

• In the worst case, the node would traverse from 
bottom to root or from root to bottom. 

 

• So the time complexity relative to the height of the 
tree. O(h) or O(log N)  

 



Made By mike199250 

Max-Heap 

• HeapSort 

 

• in-place algorithm. 

• not a stable sort. 

• Time complexity: 
– worst case: O(Nlog N) 

– average:    O(Nlog N) 

 

HeapSort algorithm 

1. build the heap 

2. repeatedly removing the root, and inserting into  

   the array. 



Made By mike199250 

Max-Heap 

• Previous question again! 

 



Made By mike199250 

Max-Heap 

• Previous question again! 

 

• I am so lazy! 

 



Made By mike199250 

Max-Heap 

• Previous question again! 

 

• I am so lazy! 

 

• Time is money! 

 



Made By mike199250 

Max-Heap 

• Previous question again! 

 

• I am so lazy! 

 

• Time is money! 

 

• Don`t worry! Be Happy! 

– C++ STL priority_queue might fulfill your dream! 

 



Made By mike199250 

~Let`s Practice~ 



Made By mike199250 

UVa 10954 

• Link: 
http://uva.onlinejudge.org/index.php?opti
on=com_onlinejudge&Itemid=8&category=21&p
age=show_problem&problem=1895 

 

 

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=21&page=show_problem&problem=1895


Made By mike199250 

UVa 10954 

• Hint: 

 

  1.If there are only three numbers a, b, c 

    and a ≤ b ≤ c, how should we add? 

 

  2.Two numbers after addition, are still  

    two numbers? 

 

 



Made By mike199250 

Problems 

• POJ(6) 

– 1338, 2255, 2431, 2442, 3253, 3481 

• Uva(8) 

– 501, 712, 10821, 10909, 10954, 11995, 11997, 
12347 

 

• 基本題為5題 

• 第二次修課的同學請至少完成上列紅字題號中的5題來達
成基本題 


