

Competitive Algorithm Design and Practice Binary Search Tree & Binary Heap 2014/02/26

Yi Long, Lu (mike199250)

mike199250@gmail.com

http://myweb.ncku.edu.tw/~f74991073/2014_02_26_BST_BH.zip Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan

NCKU CSIE Programming Contest Training Course

Outline

- Binary tree
- Binary search tree
- Practice POJ 3481
- Heap
- Binary heap
- Practice Uva 10954
- Problems

IBM. event sponsor

Binary Tree

Binary Tree

• Each node has at most two children(left child and right child).

Full Binary Tree

Full binary tree Not full binary tree

IBM

• Every level, except the last, is completely filled, and all nodes are as far left as possible.

Complete binary tree

Not complete binary tree

Traversal

- Pre-order: 16 14 8 25 10 3
- In-order: 8 14 25 16 3 10
- Post-order: 8 25 14 3 10 16

Traversal

In-order-Tree-Walk(x)

- 1. if x is not NULL
- 2. then In-order-Tree-Walk(left[x])
- 3. print key[x]
- 4. In-order-Tree-Walk(right[x])

IBM. event sponsor

Binary Search Tree

• The left sub-tree of a node contains only nodes with keys less than the node`s key.

- The left sub-tree of a node contains only nodes with keys less than the node`s key.
- The right sub-tree of a node contains only nodes with keys greater than the node's key.

- The left sub-tree of a node contains only nodes with keys less than the node`s key.
- The right sub-tree of a node contains only nodes with keys greater than the node`s key.
- The left and right sub-tree are also binary search tree.

- The left sub-tree of a node contains only nodes with keys less than the node`s key.
- The right sub-tree of a node contains only nodes with keys greater than the node`s key.
- The left and right sub-tree are also binary search tree.
- There must be no duplicate nodes.

- Left key < node`s key</pre>
- Right key > node`s key

Operations: Searching, Insertion,
 Deletion can be performed in O(h) time,
 where h is the height of the tree.

- Operations: Searching, Insertion,
 Deletion can be performed in O(h) time,
 where h is the height of the tree.
- Worst case: *h*=O(N)
- Balanced BST: *h*=O(log N)

- Operations: Searching, Insertion,
 Deletion can be performed in O(h) time,
 where h is the height of the tree.
- Worst case: *h*=O(N)
- Balanced BST: *h*=O(log N)
- How to guarantee $h=O(\log N)$?

- Operations: Searching, Insertion,
 Deletion can be performed in O(h) time,
 where h is the height of the tree.
- Worst case: *h*=O(N)
- Balanced BST: *h*=O(log N)
- How to guarantee $h=O(\log N)$?
 - Self-balancing Binary Search Tree!
 - AVL tree, Red-black tree, Treap, etc.

- Searching a binary search tree for a specific key.
- Can be a recursive or an iterative process.
- Example:
- Searching 13
- Searching 14

• Searching 13

- Searching 13
- 13 = 15 ? - No
- 13 < 15 ? - Yes

- Searching 13
- 13 = 6 ? - NO
- 13 < 6 ? - No
- 13 > 6 ? - Yes

- Searching 13
- 13 = 7 ? - NO
- 13 < 7 ? - NO
- 13 > 7 ? - Yes

- Searching 13
- 13 = 13 ? - Yes
- Find!

- Searching 14
- 14 = 15 ? - No
- 14 < 15 ? - Yes

- Searching 14
- 14 = 6 ? - No
- 14 < 6 ? - NO
- 14 > 6 ? - Yes

- Searching 14
- 14 = 7 ? - No
- 14 < 7 ? - No
- 14 > 7 ? - Yes

- Searching 14
- 14 = 13 ? - No
- 14 < 13 ? - No
- 14 > 13 ? - Yes
- But there is no sub-tree.....
- Not exist!

Made By mike199250

13

Recursive-Search(x, k)

- 1. if x = NULL or key[x] = k
- 2. return x
- 3. else if k < key[x]
- 4. return Recursive-search(left[x],k)
- 5. else
- 6. return Recursive-search(right[x],k)

- **Insert** a key to a binary search tree.
- Searching the key, then add a new node with the key value at the external place.
- Example:
- Insert 14
- Insert 19

 $\begin{array}{c} 14 \\ 6 \\ 3 \\ 7 \\ 17 \\ 17 \\ 20 \\ 4 \\ 9 \end{array}$

Made By mike199250

• Insert 14

- Insert 14
- Add a new node!

- Insert 14
- Add a new node!

Insert 14
Who is my father?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Insert 14
Who is my father?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

- Insert 14
- Done!

- Insert 19
- Add a new node!

- Insert 19
- Add a new node!

Insert 19
 Who is my father?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 <li?
 ?
 ?
 ?

- Insert 19
- Done!

Insert(Tree, k)

- 1. $p \leftarrow NULL$
- 2. x ← root[Tree]
- 3. while $x \neq NULL$
- 4. do $p \leftarrow x$
- 5. if k < key[x]
- 6. $x \leftarrow left[x]$
- 7. else
- 8. $x \leftarrow right[x]$
- 9. $z \leftarrow new node$

10. if p = NULL
11. root[Tree] ← z
12. /* Tree was empty */
13. else if k < key[p]
14. left[p] ← z
15. /* ex: 19 < 20 */
16. else
17. right[p] ← z
18. /* ex: 14 > 13 */

• Deleting a node on a binary search tree.

- Example:
- Deleting 4
- Deleting 13
- Deleting 19

• Deleting a node on a binary search tree.

- Example:
- Deleting 4

• Deleting a node on a binary search tree.

- Example:
- Deleting 4

• Deleting a node on a binary search tree.

Example: • • Deleting 13

• Deleting a node on a binary search tree.

Example: • • Deleting 13

• Deleting a node on a binary search tree.

Example: ullet• Deleting 19 Made By mike199250

• Deleting a node on a binary search tree.

Example: ullet• Deleting 19 Made By mike199250

• Deleting a node on a binary search tree.

- Deleting a node on a binary search tree.
- Deleting a leaf: Simply remove it.

- Deleting a node on a binary search tree.
- Deleting a leaf: Simply remove it.
- Deleting a node with 1 child: Remove the node and replace it with its child.

- Deleting a node on a binary search tree.
- Deleting a leaf: Simply remove it.
- Deleting a node with 1 child: Remove the node and replace it with its child.
- Deleting a node with 2 children: Call the node to be deleted N. Choose its in-order successor or predecessor node, R. Replace the data of N with the data of R, then delete R.

- Deleting a node on a binary search tree.
- Three cases!
- Example:
- Deleting 4
- Deleting 13
- Deleting 15

• Deleting 4

- Deleting 13
- Remove it!

- Deleting 13
- Remove it!

Deleting 13
 Replace it with its child
 2
 4
 9

Deleting 13
 Replace it with its child
 2
 4
 9

- Deleting 13
- Replace it with its child

- Deleting 13
- Done!

• Deleting 15

• Deleting 15 • Successor of 15 is 17 (2) (4) (1) (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2

Deleting 15
 Successor of 15
 is 17
 Replace!

• Deleting 15 • Successor of 15 is 17 • Delete R(17)! 2• Case two!

• Deleting 15 • Successor of 15 is 17 • Delete R(17)! 2• Case two!

• Done!

Tree-Minimum(x)
1. while left[x] ≠ NULL
2. do x ← left[x]
3. return x

- Example:
- Tree-Minimum(7):

Tree-Minimum(x)
1. while left[x] ≠ NULL
2. do x ← left[x]
3. return x

- Example:
- Tree-Minimum(7): 7

Tree-Minimum(x)
1. while left[x] ≠ NULL
2. do x ← left[x]
3. return x

• Example:

• Tree-Minimum(19):

Tree-Minimum(x)
1. while left[x] ≠ NULL
2. do x ← left[x]
3. return x

• Example:

• Tree-Minimum(19): 18

Tree-Successor(x)

- 1. if right[x] \neq NULL
- 2. then return Tree-Minimum (right[x])
- 3. $y \leftarrow p[x]$
- 4. While $y \neq NULL$ and x = right[y]
- 5. do $x \leftarrow y$
- 6. $y \leftarrow p[y]$
- 7. return y

- Deleting a node on a binary search tree.
- Deleting a leaf: Simply remove it.
- Deleting a node with 1 child: Remove the node and replace it with its child.
- Deleting a node with 2 children: Call the node to be deleted N. Choose its in-order successor or predecessor node, R. Replace the data of N with the data of R, then delete R.


```
Replace(N, R)
1. if p[N] \neq NULL
  if N = left[ p[N] ] /* N is a left child */
2.
3.
     left[ p[N] ] ← R
   else
                             /* N is a right child */
4.
5.
     right [p[N]] \leftarrow R
6. if R \neq NULL
7.
    p[R] \leftarrow p[N]
Deletion(Tree, N)
1. if right[N] = NULL and left[N] = NULL
2.
      Replace(N, NULL)
3. else if left[N] \neq NULL or right[N] \neq NULL
4.
      Replace(N, left[N] or right[N] )
5. else
6. R \leftarrow Tree-Successor(N)
7.
    copy R`s data into N
8.
      Deletion(Tree, R)
```


 It is so complicated, and it is not selfbalancing binary search tree!

- It is so complicated, and it is not selfbalancing binary search tree!
- Besides, I am so lazy!

- It is so complicated, and it is not selfbalancing binary search tree!
- Besides, I am so lazy!
- Moreover, time is money!

- It is so complicated, and it is not selfbalancing binary search tree!
- Besides, I am so lazy!
- Moreover, time is money!
- Don`t worry! Be Happy!
 C++ STL map, set might fulfill your dream!

• How to use them?

- How to use them?
- Search the usage of insert, erase, iterator, count, begin, end, clear, find,
 - , operator overriding, etc.

- How to use them?
- Search the usage of insert, erase, iterator, count, begin, end, clear, find, , operator overriding, etc.
- Learn whatever you need.

- How to use them?
- Search the usage of insert, erase, iterator, count, begin, end, clear, find, , operator overriding, etc.
- Learn whatever you need.
- However sometimes you may need your own self-balancing binary search tree.....
 - AVL tree, Red-black tree, treap, etc.

← → C ☆ www.cplusplus.com/reference/set/erase/	
cplus plus	Search: Go Not logged in Reference < <set> set erase log in</set>
C++ Information Tutorials Reference Articles Forum	► Diagrams for .NET, Silverlight and WPF Flowcharts, Org Charts, Mindmaps, ER diagrams, BPMN, UML, Trees, Circuit Diagrams and more. No Timeout Eval. C# and VB sample apps.
Reference E • C library: • Containers:	public member function <set></set>
<pre>- <array> @ - <deque> - <forward_list> @ - <list></list></forward_list></deque></array></pre>	<pre>(1) void erase (iterator position); (2) size_type erase (const value_types val); (3) void erase (iterator first, iterator last);</pre>
<pre>~ <map> ~ <queue> ~ <set> ~ <stack></stack></set></queue></map></pre>	Erase elements Removes from the set container either a single element or a range of elements ([first,last)).
 <unordered_map></unordered_map> <unordered_set></unordered_set> <vector></vector> Input/Output: 	 This effectively reduces the container size by the number of elements removed, which are destroyed. Parameters
Multi-threading: Other: <set></set>	position Iterator pointing to a single element to be removed from the set. Member types iterator and const_iterator are bidirectional iterator types that point to elements.
multiset set set	val Value to be removed from the set. Member type value_type is the type of the elements in the container, defined in set as an alias of its first template parameter (1).
set::set set::>set member functions: set::begin set::cbegin set::cend	<pre>first, last Iterators specifying a range within the set container to be removed: [first,last).i.e., the range includes all the elements between first and last, including the element pointed by first but not the one pointed by last. Member types iterator and const_iterator are bidirectional iterator types that point to elements.</pre>
set::clear set::count set::crbegin set::crend	For the value-based version (2), the function returns the number of elements erased, which in set containers is at most 1.
set::emplace	Member type size_type is an unsigned integral type.

💡 Example

```
1 // erasing from set
 2 #include <iostream>
 3 #include <set>
 5 int main ()
 6 {
 7
    std::set<int> myset;
 8
    std::set<int>::iterator it;
 9
10
    // insert some values:
11
    for (int i=1; i<10; i++) myset.insert(i*10); // 10 20 30 40 50 60 70 80 90
12
13
    it = myset.begin();
14
                                                     // "it" points now to 20
    ++it;
15
16
    myset.erase (it);
17
18
    myset.erase (40);
19
20
    it = myset.find (60);
21
    myset.erase (it, myset.end());
22
23
    std::cout << "myset contains:";</pre>
24
    for (it=myset.begin(); it!=myset.end(); ++it)
      std::cout << ' ' << *it;
25
    std::cout << '\n';</pre>
26
27
28
    return 0:
29 1
```

Output:

myset contains: 10 30 50

IBM. event sponsor

~Let`s Practice~

- Link: http://poj.org/problem?id=3481
- Think flowing questions:
 - 1. What do we need?
 - 2. What can we do?

~Take a Break~

Неар

• A specialized tree-based data structure that satisfies the heap property: If A is a parent node of B then the key of node A is ordered with respect to the key of node B with the same ordering applying across the heap.

- Some operations:
- heapify:
- find-max or find-min:
- delete-max or delete-min
- increase-key or decrease-key
- insert
- merge
- Different types of heaps implement the operations in different ways.

- Some Variants:
- Binary heap
- Binomial heap
- Fibonacci heap
- etc.

• Different types of heaps implement the operations in different ways.

• Using a binary tree.

- Using a binary tree.
- Shape property: A complete binary tree!

- Using a binary tree.
- Shape property: A complete binary tree!
- Heap property: All nodes are either ≥ or ≤ each of its children.

- Using a binary tree.
- Shape property: A complete binary tree!
- Heap property: All nodes are either ≥ or ≤ each of its children.
- max-heaps: ≥ children.
- min-heaps: ≤ children.

- Using a binary tree.
- Shape property: A complete binary tree!
- Heap property: All nodes are either ≥ or ≤ each of its children.
- max-heaps: ≥ children.
- min-heaps: ≤ children.
- Ordering of siblings in a heap is not specified!

• Every level, except the last, is completely filled, and all nodes are as far left as possible.

Complete binary tree

Not complete binary tree

• It is not easy to write tree structure. However, we are more familiar with array.

- It is not easy to write tree structure. However, we are more familiar with array.
- Don`t worry! Be Happy!
- We can use the index to represent the node on the tree.

- root is A[1]
- For A[i]
- Left child is A[i*2]
- Right child is A[i*2+1]
- Parent is A[floor(i/2)] 1

ACCM International Collegiste Programming Contests IEBM. event sponsor

- length[A]: number of elements in A.
- heap-length[A]: number of elements in the heap stored within A.
- heap-length[A] ≤ length[A] 1

ACCM International Collegiste Programming Contests IEBM. event sponsor

- length[A]: number of elements in A.
- heap-length[A]: number of elements in the heap stored within A.
- heap-length[A] ≤ length[A] 1

• Assume that sub-trees are heaps, but A[i] may be smaller than its children.

- Assume that sub-trees are heaps, but A[i] may be smaller than its children.
- Max-Heapify(A, i): A[i] will downwardmove, so that the sub-tree rooted at A[i] becomes a heap.

acm International Collegiat Programming Contest

Max-Heapify(A, i)

- 1. left \leftarrow i*2
- 2. right \leftarrow i*2+1
- 3. largest \leftarrow i
- 4. if left \leq heap-length[A] and A[left] > A[largest]
- 5. largest \leftarrow left
- 6. if right \leq heap-length[A] and A[right] > A[largest]
- 7. largest \leftarrow right
- 8. if largest \neq i
- 9. swap(A[i], A[largest])
- 10. Max-heapify(A, largest)

• Time complexity of Max-Heapify(A, i)?

- Time complexity of Max-Heapify(A, i)?
- In the worst case, the node has to be swapped with its child on each level until it reaches the bottom level.

- Time complexity of Max-Heapify(A, i)?
- In the worst case, the node has to be swapped with its child on each level until it reaches the bottom level.
- So the time complexity relative to the height of the tree. O(h) or O(log N)

• How to build the entire heap?

- How to build the entire heap?
- Recursively build the sub-trees first, then do maxheapify?

- How to build the entire heap?
- Recursively build the sub-trees first, then do maxheapify?
- We can do **max-heapify**(A, i) from i = length[A] to 1!

- How to build the entire heap?
- Recursively build the sub-trees first, then do maxheapify?
- We can do **max-heapify**(A, i) from i = length[A] to 1!

- How to build the entire heap?
- Recursively build the sub-trees first, then do maxheapify?
- We can do **max-heapify**(A, i) from i = length[A] to 1!

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, i)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, 5)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, 4)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, 3)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, 2)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, 2)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, 2)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, 1)

- 1. heap-length[A] \leftarrow length[A]
- 2. for i \leftarrow floor(length[A]/2) down to 1 do
- 3. Max-Heapify(A, i)

• Time complexity of Build-Max-Heap(A)?

- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.

- Max-Heap
- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.
- The total is O(N*log N)!

IRM

- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.
- The total is O(N*log N)!
- But... the Max-Heapify(A, i) is not always O(log N)!

- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.
- The total is O(N*log N)!
- But... the Max-Heapify(A, i) is not always O(log N)!
- The height of heap is $\lfloor \log(N) \rfloor$, the number of nodes at height h is $\leq \lceil n/2^{h+1} \rceil$.

- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.
- The total is O(N*log N)!
- But... the Max-Heapify(A, i) is not always O(log N)!
- The height of heap is $\lfloor \log(N) \rfloor$, the number of nodes at height h is $\leq \lceil n/2^{h+1} \rceil$.
- And then

- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.
- The total is O(N*log N)!
- But... the Max-Heapify(A, i) is not always O(log N)!
- The height of heap is $\lfloor \log(N) \rfloor$, the number of nodes at height h is $\leq \lceil n/2^{h+1} \rceil$.
- And then...

- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.
- The total is O(N*log N)!
- But... the Max-Heapify(A, i) is not always O(log N)!
- The height of heap is $\lfloor \log(N) \rfloor$, the number of nodes at height h is $\leq \lceil n/2^{h+1} \rceil$.
- And then.....

- Time complexity of Build-Max-Heap(A)?
- In the first glimpse:
 - About n/2 calls to Max-Heapify(A, i).
 - Each takes $O(\log N)$ time.
- The total is O(N*log N)!
- But... the Max-Heapify(A, i) is not always O(log N)!
- The height of heap is $\lfloor \log(N) \rfloor$, the number of nodes at height h is $\leq \lceil n/2^{h+1} \rceil$.
- And then..... O(N)!

- Did we forget something?
 - Array \rightarrow Max-heap or Min-heap

- Did we forget something?
 - Array \rightarrow Max-heap or Min-heap

• Insertion and Deletion?

- Did we forget something?
 - Array \rightarrow Max-heap or Min-heap

- Insertion and Deletion?
- Add an element to the heap
- Delete the root from the heap

- Did we forget something?
 - Array \rightarrow Max-heap or Min-heap

- **Insertion** and **Deletion**?
- Add an element to the heap
- Delete the root from the heap
- Conform the shape property first, then restore the heap property by traversing up or down.

- Did we forget something?
 - Array \rightarrow Max-heap or Min-heap

- **Insertion** and **Deletion**?
- Add an element to the heap
- Delete the root from the heap
- Conform the shape property first, then restore the heap property by traversing up or down.
- The last element of the bottom level!

Insertion algorithm

- 1. Add the element to the bottom level of the heap.
- 2. Compare the added element with its parent. If they are in the correct order, stop.
- 3. If not, swap the element with its parent and return to step 2.

• Up-heap

Deletion algorithm

- 1. Replace the root of the heap with the last element of the bottom level.
- 2. Compare the new root with its children. If they are in the correct order, stop.
- 3. If not, swap the element with one of its children and return to step 2.(swap with larger child for Max-heap, swap with smaller child for Min-heap).
- Down-heap, Max-heapify is similar to it.

- Time complexity of **Insertion and Deletion**?
- In the worst case, the node would traverse from bottom to root or from root to bottom.
- So the time complexity relative to the height of the tree. O(h) or O(log N)

- HeapSort
- in-place algorithm.
- not a stable sort.
- Time complexity:
 - worst case: O(Nlog N)
 - average: O(Nlog N)

HeapSort algorithm

- 1. build the heap
- repeatedly removing the root, and inserting into the array.

• Previous question again!

- Previous question again!
- I am so lazy!

- Previous question again!
- I am so lazy!
- Time is money!

- Previous question again!
- I am so lazy!
- Time is money!
- Don`t worry! Be Happy!
 C++ STL priority_queue might fulfill your dream!

IBM. event sponsor

~Let`s Practice~

UVa 10954

• Link:

http://uva.onlinejudge.org/index.php?opti
on=com_onlinejudge&Itemid=8&category=21&p
age=show_problem&problem=1895

- 1.If there are only three numbers a, b, cand $a \le b \le c$, how should we add?
- 2.Two numbers after addition, are still two numbers?

Problems

- POJ(6)
 - 1338, **2255**, **2431**, **2442**, 3253, **3481**
- Uva(8)
 - 501, 712, 10821, 10909, 10954, 11995, 11997, 12347
- 基本題為5題
- 第二次修課的同學請至少完成上列紅字題號中的5題來達 成基本題

